
AAM of Article Published in The VLDB Journal (2019)
https://doi.org/10.1007/s00778-019-00544-1

Comparing heuristics for graph edit distance computation

David B. Blumenthal · Nicolas Boria · Johann Gamper · Sébastien Bougleux · Luc
Brun

Received: 31 December 2018 / Revised: 16 May 2019 / Accepted: 27 May 2019

Abstract Because of its flexibility, intuitiveness, and ex-
pressivity, the graph edit distance (GED) is one of the most
widely used distance measures for labeled graphs. Since ex-
actly computing GED is NP-hard, over the past years, various
heuristics have been proposed. They use techniques such as
transformations to the linear sum assignment problem with
error-correction, local search, and linear programming to
approximate GED via upper or lower bounds. In this pa-
per, we provide a systematic overview of the most important
heuristics. Moreover, we empirically evaluate all compared
heuristics within an integrated implementation.

Keywords Graph edit Distance · Graph databases ·
Similarity search · Empirical evaluation

Mathematics Subject Classification (2010) 68R10 ·
68T10 · 68P15 · 92E10

Contents

1 Introduction . 1
2 Related work . 3
3 Preliminaries . 3
4 Overview of compared heuristics 5
5 Heuristics based on transformations to the linear sum assign-

ment problem with error-correction 7
6 Heuristics based on linear programming 12
7 Heuristics based on local search 15
8 Miscellaneous heuristics 17
9 Experimental evaluation 20
10 Conclusions and future work 29
A Datasets and edit cost functions 32
B Visualization of experiments via dominance graphs 32

David B. Blumenthal, Johann Gamper
Free University of Bozen-Bolzano, Bolzano, Italy
E-mail: {david.blumenthal, gamper}@inf.unibz.it

Nicolas Boria, Sébastien Bougleux, Luc Brun
Normandie Univ., GREYC, ENSICAEN, UNICAEN, Caen, France
E-mail: {boria, brun}@ensicaen.fr, bougleux@unicaen.fr

1 Introduction

Labeled graphs can be used for modeling various kinds of
objects, such as chemical compounds, images, molecular
structures, and many more. Because of this flexibility, labeled
graphs have received increasing attention over the past years.
One task researchers have focused on is the following: Given
a database G that contains labeled graphs, find all graphs
G ∈ G that are sufficiently similar to a query graph H or find
the k graphs from G that are most similar to H [23, 29, 66].
Being able to quickly answer graph similarity queries of this
kind is crucial for the development of performant pattern
recognition techniques in various application domains [62],
such as keyword spotting in handwritten documents [61] and
cancer detection [48].

For answering graph similarity queries, a distance mea-
sure between two labeled graphs G and H has to be defined.
A very flexible, sensitive and therefore widely used measure
is the graph edit distance (GED), which is defined as the
minimum cost of an edit path between G and H [20, 59]. An
edit path is a sequence of graphs starting at G and ending at
a graph that is isomorphic to H such that each graph on the
path can be obtained from its predecessor by applying one of
the following edit operations: adding or deleting an isolated
node or an edge, and relabelling an existing node or edge.
Each edit operation comes with an associated non-negative
edit cost, and the cost of an edit path is defined as the sum of
the costs of its edit operations. GED inherits metric properties
from the underlying edit costs [36]. For instance, if G is the
domain of graphs with real-valued node and edge labels and
the edit costs are defined as the Euclidean distances between
the labels, then GED is a metric on G.

Of course, computing GED is not the only way for as-
sessing whether or not two graphs are similar. In particular,
one popular approach is to embed the graphs into multidi-
mensional vector spaces and then to compare their vector

https://doi.org/10.1007/s00778-019-00544-1

2 David B. Blumenthal et al.

representations [19, 23, 29, 66]. The main advantage of this
paradigm is that it allows for fast computations. On the other
hand, a substantial part of the information encoded in the orig-
inal graphs is lost when embedding them into vector spaces.
If the graphs are large (e. g., social networks or street net-
works), this information loss is tolerable. However, there are
application domains such as keyword spotting in handwrit-
ten documents, cancer detection, and drug discovery, where
the graphs are quite small and where local information that
would be lost by embedding them into vector spaces is cru-
cial [62]. GED is mainly used for these application domains,
i. e., in settings where we have to answer fine-grained simi-
larity queries for (possibly very many) rather small graphs.

Computing GED is a very difficult problem. In fact, it has
been shown that the problem of computing GED is NP-hard
even for uniform edit costs [68], and APX-hard for metric edit
costs [45]. Even worse: since, by definition of GED, it holds
that GED(G,H) = 0 just in case G and H are isomorphic,
approximating GED within any approximation ratio is GI-
hard. These theoretical complexities are mirrored by the fact
that, in practice, no available exact algorithm can reliably
compute GED on graphs with more than 16 nodes [10].

Because of the hardness of exactly computing GED or
approximating it within provable approximation ratios, dur-
ing the past years, a huge variety of heuristics have been
proposed that approximate GED via lower or upper bounds,
using techniques such as transformations to the linear sum
assignment problem with error-correction, linear program-
ming, and local search. Since no theoretical guarantees can be
provided for the produced bounds, the heuristics are always
evaluated empirically. The most frequently used evaluation
criteria are the following:

C1 Runtime behavior of the heuristics.
C2 Tightness of the produced lower or upper bounds.
C3 Performance of pattern recognition frameworks that use

the bounds produced by the heuristics as underlying
distance measures.

In this paper, we provide a systematic overview of the
most important heuristics for the computation of GED. Fig-
ure 1 shows the suggested taxonomy. Whenever possible,
we model the compared heuristics as instantiations of one
of the following three paradigms: LSAPE-GED, LP-GED, and
LS-GED. Instantiations of LSAPE-GED use transformations
to the linear sum assignment problem with error-correction
(LSAPE) for heuristically computing GED. All instantiation
of LSAPE-GED produce upper bounds, some also yield lower
bounds. Instantiations of LP-GED compute lower and upper
bounds for GED by employing linear programming (LP) re-
laxations of mixed integer programming (MIP) formulations
of GED. And instantiations of the paradigm LS-GED improve
initially computed or randomly generated upper bounds by
using variants of local search.

Heuristics for GED computation

Instantiations of paradigm LSAPE-GED

Instantiations of paradigm LP-GED

Instantiations of paradigm LS-GED

Miscellaneous heuristics

Fig. 1 Suggested taxonomy for heuristics for GED computation.

Locating the presented heuristics for GED within the sug-
gested taxonomy has two main advantages: Firstly, it allows
to clearly highlight differences and similarities between the
presented heuristics. Secondly, the suggested taxonomy pro-
vides a guidance for implementing the heuristics in a clean,
code-efficient, and comparable way, as common constituents
of all instantiations of one of the paradigms can be imple-
mented within an interface representing the paradigm. For
instance, all instantiations of LSAPE-GED must have access to
a solver for LSAPE. This solver can be implemented or called
from an interface that represents the paradigm LSAPE-GED.

We carried out extensive experiments in order to test
how the compared heuristics perform w. r. t. the evaluation
criteria C1 to C3. For enhancing comparability, we reim-
plemented all heuristics within the C++ library GEDLIB
and ensured that they use the same data structures and sub-
routines whenever possible. GEDLIB mirrors the taxonomy
displayed in Figure 1, i. e., we implemented the paradigms
LSAPE-GED, LP-GED, and LS-GED as abstract classes and
their instantiations as derived classes. GEDLIB is freely avail-
able on GitHub: https://github.com/dbblumenthal/
gedlib/.

An alternative view of the upper and lower bounds pro-
duced by heuristic algorithms for GED is to not regard them
as proxies for GED, but rather as independent distance mea-
sures for labeled graphs whose design is guided by GED.
With this interpretation, two meta-questions naturally arise:

Q1 Is it indeed beneficial to use GED as a guidance for
the design of graph distance measures, if these distance
measures are to be used within pattern recognition frame-
works?

Q2 Do graph distance measures defined by upper bounds
for GED or graph distance measures defined by lower
bounds for GED perform better when used within pattern
recognition frameworks?

To the best of our knowledge, these questions have not
been explicitly discussed in the literature. In this paper, we

https://github.com/dbblumenthal/gedlib/
https://github.com/dbblumenthal/gedlib/

Comparing heuristics for graph edit distance computation 3

intend to fill this gap. For addressing Q1, we evaluate if per-
forming well w. r. t. the evaluation criterion C3 is positively
correlated to performing well w. r. t. C2. For addressing Q2,
we check if, globally, heuristics producing lower bounds or
heuristics producing upper bounds perform better w. r. t. C3.
In sum, our paper contains the following contributions:

– We suggest a taxonomy for algorithms that heuristically
compute GED.

– We present the most important existing heuristics within
this taxonomy.

– We present the results of an extensive empirical eval-
uation of all compared heuristics. For carrying out the
experiments, all heuristics were reimplemented in C++.

– We empirically address the question whether or not GED
constitutes a good guidance for the design of graph dis-
tance measures to be used for pattern recognition tasks.

– We empirically address the question whether lower or
upper bounds for GED perform better when used for
pattern recognition tasks.

The remainder of this paper is organized as follows: In
Section 2, related work is discussed. In Section 3, important
concepts and notations that are used throughout the paper are
introduced. In Section 4, a first overview of the compared
heuristics is provided and their most important properties
are summarized in a comparative way. In the Sections 5
to 7, heuristics that instantiate the paradigms LSAPE-GED,
LP-GED, and LS-GED are presented. In Section 8, miscel-
laneous heuristics that cannot be modeled as instantiations
of one of the paradigms are presented. In Section 9, the
outcomes of the experimental evaluation are presented. Sec-
tion 10 concludes the paper. Appendix A contains short de-
scriptions of the test datasets, and Appendix B contains fur-
ther figures for visualizing the results of the experiments.

2 Related work

To the best of our knowledge, the present paper offers the
first comprehensive comparative evaluation of algorithms
for heuristically computing GED available in the litera-
ture. Nonetheless, there are similar works. In [10], some
of the most important algorithms for exactly computing GED
are evaluated. Structurally, this paper is very similar to the
present one, but its scope is different, as heuristics are not
considered.

In [1], the results of a graph edit distance contest are
reported. Authors of exact or heuristic algorithms for GED
could submit binaries of their algorithms, which were run
and compared w. r. t. a set of evaluation criteria. As only the
submitted algorithms are described in [1], many important
GED heuristics are not covered. Moreover, [1] differs from
the present paper in that it empirically evaluates implementa-
tions rather than algorithms.

In another survey [31], the main focus is on methods
that learn good edit costs for given datasets. Only a few
algorithms are presented that aim at computing GED for
fixed edit costs, and those that are, are mostly designed for
special graphs without node or edge labels. Moreover, the
presented algorithms are not compared empirically.

The surveys [19,23,29,66] provide broader overviews of
graph based methods for pattern recognition. In addition to
GED, related topics such as exact graph matching and graph
kernels are discussed. Like in [31], the presented methods
are not compared experimentally in [19, 23, 29, 66].

Methods for GED are also discussed in the books [49,
52]. In [52], some algorithms for exactly and heuristically
computing GED are described and empirically evaluated, but
the main focus is on how to use GED for defining graph
kernels and vector space embeddings that can be employed
for clustering and classification. The book [49] exclusively
treats GED heuristics, but has a very narrow scope: While a
few heuristics are described and tested in great detail, many
others are not covered.

Finally, in [67, 69, 71], it is discussed how to index graph
databases for efficiently answering graph similarity queries
when GED is used as the underlying distance measure. How-
ever, as these papers focus on indexing techniques rather than
on the design of heuristics, we do not present their findings
in this survey.

3 Preliminaries

Since the graphs for which GED based methods are applied
are mostly undirected [2,50,62], most heuristics for GED are
presented for undirected labeled graphs, although they can
usually be easily generalized to directed graphs. For the ease
of presentation, we restrict to undirected graphs also in this
paper. For the generalizations of the presented heuristics to
directed graphs, we refer to the original publications.

An undirected labeled graph G is a 4-tuple G = (V G,EG,

`G
V , `

G
E), where V G and EG are sets of nodes and edges, ΣV

and ΣE are label alphabets, and `G
V : V G→ ΣV , `G

E : EG→ ΣE
are labeling functions. The dummy symbol ε denotes dummy
nodes and edges as well as their labels. Throughout the paper,
we denote the nodes of a graph G by V G := {ui | i ∈ [|V G|]}
and the nodes of a graph H by V H := {vk | k ∈ [|V H |]}. Fur-
thermore, we use the notation (ui,u j) := (u j,ui) := {ui,u j} ∈
EG to denote that there is an undirected edge in G that con-
nects the nodes ui and u j.

Let G := {G | img(`G
V) ⊆ ΣV ∧ img(`G

E) ⊆ ΣE} be the
domain of graphs with node labels from ΣV and edge la-
bels from ΣE . A function cV : ΣV ∪{ε}×ΣV ∪{ε} → R≥0
is a node edit cost functions for G just in case, for all
(α,α ′) ∈ (ΣV ∪{ε})× (ΣV ∪{ε}), cV (α,α ′) = 0 holds if
and only if α = α ′. Similarly, cE : ΣE ∪{ε}×ΣE ∪{ε} →

4 David B. Blumenthal et al.

Table 1 Edit operations and edit costs.

edit operations edit costs

node edit operations
substitute α-labeled node by α ′-labeled node cV (α,α ′)
delete isolated α-labeled node cV (α,ε)

insert isolated α-labeled node cV (ε,α)

edge edit operations
substitute β -labeled edge by β ′-labeled edge cE(β ,β

′)
delete β -labeled edge cE(β ,ε)

insert β -labeled edge between existing nodes cE(ε,β)

R≥0 is an edge edit cost functions for G just in case, for all
(β ,β ′)∈ (ΣE ∪{ε})×(ΣE ∪{ε}), cE(β ,β) = 0 holds if and
only if β = β ′. We say that a node edit cost function cV is con-
stant just in case there are constants csub

V ,cdel
V ,cins

V ∈ R such
that cV (α,α ′) = csub

V , cV (α,ε) = cdel
V , and cV (ε,α

′) = cins
V

holds for all (α,α ′) ∈ ΣV ×ΣV with α 6= α ′. Constant edge
edit costs are defined analogously. We say that the edit cost
functions cV and cE are uniform if and only if both of them
are constant and, additionally, we have csub

V = cdel
V = cins

V =

csub
E = cdel

E = cins
E .

Given fixed edit cost functions cV and cE , GED is defined
in terms of the six edit operations and their associated edit
costs, which are detailed in Table 1. An edit path P between
two graphs G,H ∈G is a sequence P := (oi)

r
i=1 of edit oper-

ations that satisfies (or ◦ . . .◦o1)(G)' H, i. e., transforms G
into a graph H ′ which is isomorphic to H. Its edit cost c(P)
is defined as the sum c(P) := ∑r

i=1 c(oi) of the contained edit
operations. We are now in the position to give a first intuitive
definition of GED.

Definition 1 (GED — first definition [10, 36]) The graph
edit distance (GED) between two graphs G,H ∈G is defined
as GED(G,H) := min{c(P) | P∈Ψ(G,H)}, where Ψ(G,H)

is the set of all edit paths between G and H.

Definition 1 is very intuitive but useless for algorithmic
purposes: Since the graph isomorphism problem currently
cannot be solved in polynomial time [3], it is not even possi-
ble to polynomially recognize an edit path as such, let alone
to optimize over the set of all edit paths. For this reason, all
exact or approximate GED algorithms work with an alterna-
tive definition. This definition crucially uses the concept of a
node map between two graphs G and H.

Definition 2 (Node map [10]) Let G,H ∈G be two graphs.
A relation π ⊆ (V G∪{ε})× (V H ∪{ε}) is called node map
between G and H if and only if |{v | v∈ (V H ∪{ε})∧(u,v)∈
π}| = 1 holds for all u ∈ V G and |{u | u ∈ (V G ∪ {ε})∧
(u,v) ∈ π}| = 1 holds for all v ∈ V H . We write π(u) = v
just in case (u,v) ∈ π and u 6= ε , and π−1(v) = u just in
case (u,v) ∈ π and v 6= ε . Π(G,H) denotes the set of all
node maps between G and H. For edges e = (u,u′) ∈ EG

Table 2 Edit operations and edit costs induced by node map π ∈
Π(G,H); u ∈V G and v ∈V H are nodes, e ∈ EG and f ∈ EH are edges.

case edit operations edit costs

node edit operations
π(u) = v substitute u by v cV (u,v) := cV (`

G
V (u), `

H
V (v))

π(u) = ε delete u cV (u,ε) := cV (`
G
V (u),ε)

π−1(v) = ε insert v cV (ε,v) := cV (ε, `
H
V (v))

edge edit operations
π(e) = f substitute e by f cE(e, f) := cE(`

G
E (e), `

H
E (f))

π(e) /∈ EH delete e cE(e,ε) := cE(`
G
E (e),ε)

π−1(f) /∈ EG insert f cE(ε, f) := cE(ε, `
H
E (f))

and f = (v,v′) ∈ EH , we introduce the short-hand notations
π(e) := (π(u),π(u′)) and π−1(f) := (π−1(v),π−1(v′)).

A node map π ∈ Π(G,H) specifies for all nodes and
edges of G and H whether they are substituted, deleted, or
inserted. Table 2 details these edit operations.

Definition 3 (Induced edit path) Let G,H ∈ G be graphs,
π ∈Π(G,H) be a node map between them, and O be the set
of π’s induced edit operations as specified in Table 2. Then
an ordering Pπ := (or)

|O|
r=1 of O is called induced edit path of

the node map π if and only if edge deletions come first and
edge insertions come last, i. e., if there are indices r1 and r2
such that or is an edge deletion just in case 1≤ r < r1 and oi
is an edge insertion just in case r2 < r ≤ |O|.

It has been shown that induced edit paths are indeed edit
paths, i. e., that Pπ ∈Ψ(G,H) holds for all π ∈Π(G,H) [14].
The cost c(Pπ) of an edit path Pπ induced by a node map
π ∈Π(G,H) is given as follows:

c(Pπ) = ∑
u∈V G

π(u)∈V H

cV (u,π(u))

︸ ︷︷ ︸
node substitutions

+ ∑
e∈EG

π(e)∈EH

cV (e,π(e))

︸ ︷︷ ︸
edge substitutions

(1)

+ ∑
u∈V G

π(u)/∈V H

cV (u,ε)

︸ ︷︷ ︸
node deletions

+ ∑
e∈EG

π(e)/∈EH

cE(e,ε)

︸ ︷︷ ︸
edge deletions

+ ∑
v∈V H

π−1(v)/∈V G

cV (ε,v)

︸ ︷︷ ︸
node insertions

+ ∑
f∈EH

π−1(f)/∈EG

cE(ε, f)

︸ ︷︷ ︸
edge insertions

Note that, by Definition 3, a node map π generally in-
duces more than one edit path. However, all of these edit
paths are equivalent, as they differ only w. r. t. the ordering
of the contained edit operations. In the following, we will
therefore identify all edit paths induced by π . We can now
give an alternative definition of GED.

Comparing heuristics for graph edit distance computation 5

Table 3 Edit operations and edit costs induced by node map π shown
in Figure 2, given the edit cost functions defined in Example 1.

edit operations edit costs

node edit operations
substitute u1 by v1 cV (u1,v1) = 0.75

∥∥[0.69
0.27

]
−
[

0.92
0.32

]∥∥
substitute u2 by v2 cV (u2,v2) = 0.75

∥∥[1.40
1.85

]
−
[

1.76
1.81

]∥∥
substitute u3 by v3 cV (u3,v3) = 0.75

∥∥[2.55
0.45

]
−
[

2.30
0.21

]∥∥
substitute u4 by v4 cV (u4,v4) = 0.75

∥∥[0.93
1.37

]
−
[

0.92
0.85

]∥∥
delete node u5 cV (u5,ε) = 0.675

edge edit operations
substitute (u1,u2) by (v1,v2) cE((u1,u2),(v1,v2)) = 0
substitute (u2,u3) by (v2,v3) cE((u2,u3),(v2,v3)) = 0
delete (u4,u5) cE((u4,u5),ε) = 0.425
insert (v3,v4) cE(ε,(v3,v4)) = 0.425

π

G

u1

u2

u3

u4

u5

ε

x

y

0 1/2

1/2

H

v1

v2

v3

v4

ε

x

y

0 1/2

1/2

Fig. 2 Two graphs G and H from the LETTER (H) dataset and a node
map π between them.

Definition 4 (GED — alternative definition [14, 20]) The
graph edit distance (GED) between two graphs G,H ∈G is
defined as GED(G,H) := min{c(Pπ) | π ∈Π(G,H)}, where
Pπ ∈Ψ(G,H) is the edit path induced by the node map π .

In [36], it is shown that Definition 1 and Definition 4 are
equivalent if the underlying edit cost functions cV and cE
are metrics. In [10], this result is extended to general edit
cost functions. There main advantage of using Definition 4
instead of Definition 1 is that, unlike edit paths, node maps
can be constructed easily. Since each node map π ∈Π(G,H)

induces an upper bound c(Pπ)≥ GED(G,H), one can hence
straightforwardly generate upper bounds.

Example 1 Consider the graphs G and H shown in Figure 2.
G and H are taken from the LETTER (H) dataset and repre-
sent distorted letter drawings [50]. Their nodes are labeled
with two-dimensional, non-negative Euclidean coordinates.
Edges are unlabeled. Hence, we have ΣV = R≥0×R≥0 and
ΣE = {1}. In [52], it is suggested that the edit cost functions
cV and cE for LETTER (H) should be defined as follows:
cE(1,ε) := cE(ε,1) := 0.425, cV (α,α ′) := 0.75‖α−α ′‖,
and cV (α,ε) := cV (ε,α) := 0.675 for all node labels α,α ′ ∈
ΣV , where ‖·‖ is the Euclidean norm. Now consider the node
map π ∈Π(G,H) shown in Figure 2. Its induced edit oper-
ations and edit costs are detailed in Table 3. By summing
the induced edit costs, we obtain that π’s induced edit path

Pπ ∈Ψ(G,H) has cost c(Pπ) = 2.623179, which implies
GED(G,H)≤ 2.623179.

We conclude this section by recalling mathematical con-
cepts and notations that are used throughout the paper.

Definition 5 (Miscellaneous definitions) In the remainder
of this paper, we use the following definitions:

– For all N ∈ N, we define [N] := {n ∈ N | 1≤ n∧n≤ N}.
– Let G ∈ G be a graph. A edge sequence ((ui1 ,ui2))

k
i=1,

(ui1 ,ui2) ∈ EG for all i ∈ [k], is called walk of length k
between the nodes ui1 ,uk2 ∈V G, if and only if ui2 = ui+11

holds for all i ∈ [k−1].
– Let G ∈G be a graph. A walk between two nodes u,u′ ∈

V G is called path between u and u′, if and only if no node
is encountered more than once.

– Let G ∈G be a graph. The distance between two nodes
u,u′ ∈ V G in G, is defined as dG(u,u′) := 0, if u = u′,
as dG(u,u′) := min{|P| | P is path between u and u′}, if
u 6= u′ and u and u′ are in the same connected compo-
nent of G, as dG(u,u′) := ∞, if u and u′ are in different
connected components of G.

– The diameter of a graph G ∈G is defined as diam(G) :=
maxu∈V G maxu′∈V G dG(u,u′).

– Let G ∈ G be a graph. The kth neighborhood of a node
u∈V G in G is defined as NG

k (u) := {u′ ∈V G | dG(u,u′)=
k}. The 1st neighborhood is called neighborhood of node
u and abbreviated as NG(u) := NG

1 (u).
– Let G ∈G be a graph. The set of edges that are incident

with a node u ∈V G is denoted by EG(u).
– Let G ∈G be a graph. The degree of a node u ∈V G in G

is defined as degG(u) := |NG(u)|.
– The maximum degree of a graph G ∈ G is defined as

maxdeg(G) := maxu∈V G degG(u).
– Let f : X → Y be a function and A⊆ X be a subset of its

domain. The image of A under f is denoted by f [A], and
the multiset image of A under f is denoted by f JAK.

– Let G ∈ G be a graph and V ⊆ V G be a subset of its
nodes. Then G[V] := (V,EG ∩ (V ×V), `G

V , `
G
E) denotes

the subgraph of G which is induced by the node set V .
– The expression δtrue|false is defined as δtrue := 1 and

δfalse := 0.

4 Overview of compared heuristics

Table 4 gives an overview of the heuristics that are compared
in this survey. Each heuristic is denoted by a name written in
typewriter font. Whenever possible, this name is taken from
the original publication. If no original name is available, we
invented a name which reflects the main technical ingredient
of the heuristic.

Some heuristics are categorized as extensions rather than
instantiations of the paradigms LSAPE-GED and LS-GED,

6 David B. Blumenthal et al.

Table 4 Overview of compared heuristics.

heuristic publications upper bound lower bound limitations presented in

instantiations of the paradigm LSAPE-GED

NODE [36] yes yes ignores edges Section 5.2.1
BP [51] yes no none Section 5.2.2
BRANCH [8, 9, 57] yes yes none Section 5.2.3
BRANCH-FAST [8, 9] yes yes none Section 5.2.4
BRANCH-CONST [70, 71] yes yes constant cE Section 5.2.5
STAR [68] yes yes ignores edge labels, uniform cV and cE Section 5.2.6
SUBGRAPH [21] yes no none Section 5.2.7
WALKS [32] yes no constant and symmetric cV and cE Section 5.2.8
RING [4, 6] yes no none Section 5.2.9
RING-ML [6] yes no none Section 5.2.10
PREDICT [6, 54] yes no none Section 5.2.11
extensions of the paradigm LSAPE-GED

CENTRALITIES [25, 53] yes no none Section 5.3.1
MULTI-SOL [6, 26] yes no none Section 5.3.2

instantiations of the paradigm LP-GED

F1 [43, 44] yes yes none Section 6.2.1
F2 [44] yes yes none Section 6.2.2
COMPACT-MIP [10] yes yes none Section 6.2.3
ADJ-IP [36] yes yes ignores edge labels, constant and symmetric cE Section 6.2.4

instantiations of the paradigm LS-GED

REFINE [12, 68] yes no none Section 7.2.1
K-REFINE [12] yes no none Section 7.2.2
BP-BEAM [56] yes no none Section 7.2.3
IBP-BEAM [27] yes no none Section 7.2.4
IPFP [7, 14, 16] yes no none Section 7.2.5
extensions of the paradigm LS-GED

MULTI-START [13, 26] yes no none Section 7.3.1
RANDPOST [12, 13] yes no none Section 7.3.2

miscellaneous heuristics
HED [28] no yes none Section 8.1
BRANCH-TIGHT [9] yes yes none Section 8.2
SA [58] yes no none Section 8.3
BRANCH-COMPACT [71] no yes uniform cV and cE Section 8.4
PARTITION [71] no yes uniform cV and cE Section 8.5
HYBRID [71] no yes uniform cV and cE Section 8.6

respectively. Although, in the original publications, these
heuristics are usually presented as improvements of a spe-
cific instantiation of the respective paradigm, they can in fact
be used to improve all instantiations. For instance, in [26], it
is suggested that the local search algorithm IPFP should be
run from several initial solutions in parallel. As this technique
does not depend in the choice of the local search algorithm,
it can be generalized to paradigm level and hence yields the
extension MULTI-START of the paradigm LS-GED. In this
survey, we generalize techniques to paradigm level whenever
possible.

Moreover, some of the heuristics are designed for special
edit cost functions. For instance, BRANCH-CONST requires
constant edge edit costs, i. e., expects that there are constants

csub
E ,cdel

E ,cins
E ∈ R such that cE(β ,β

′) = csub
E , cE(β ,ε) =

cdel
E , and cV (ε,β

′) = cins
E holds for all (β ,β ′) ∈ ΣE × ΣE

with β 6= β ′. In many datasets, this constraint is not sat-
isfied. In our implementation of BRANCH-CONST, we there-
fore set csub

E := min{cE(β ,β
′) | (β ,β ′)∈ `G

E [E
G]×`H

E [E
H]∧

β 6= β ′}, cdel
E := min{cE(β ,ε) | β ∈ `G

E [E
G]}, and cins

E :=
min{cE(ε,β

′) | β ′ ∈ `H
E [E

H]} when running BRANCH-CONST

on graphs G and H that come with non-constant edge edit
costs. Since we use minima for defining the constants, this
preprocessing leaves BRANCH-CONST’s lower bound valid.
Similar techniques are used for enforcing the cost constraints
of the other methods that are not designed for general edit
costs.

Comparing heuristics for graph edit distance computation 7

5 Heuristics based on transformations to the linear sum
assignment problem with error-correction

In this section, we first introduce the paradigm LSAPE-GED,
which generalizes heuristics that use transformations to
the linear sum assignment problem with error-correction
(LSAPE) for upper and, possibly, lower bounding GED (Sec-
tion 5.1). Subsequently, we present heuristics that can be
modeled as instantiations of LSAPE-GED (Section 5.2), and
summarize heuristics that can be modeled as extensions of
LSAPE-GED (Section 5.3).

5.1 The paradigm LSAPE-GED

Definition 4 implies that each node map between G and H
induces an upper bound for GED(G,H). Instantiations of
the paradigm LSAPE-GED use transformations to LSAPE for
heuristically finding a node map that induces a tight upper
bound. LSAPE is defined as follows:

Definition 6 (LSAPE — first definition [15]) Given a ma-
trix C ∈ R(n+1)×(m+1) with cn+1,m+1 = 0, the linear sum as-
signment problem with error-correction (LSAPE) consists in
the task to minimize C(π) := ∑(i,k)∈π ci,k over all relations
π ∈Π(n,m), where

– Π(n,m) ⊆P([n+1]× [m+1]) is defined as the set of
all feasible LSAPE solutions for C, and

– a relation π ⊆ [n+1]× [m+1] is called feasible LSAPE
solution for C if and only if |{k | k ∈ [m+ 1]∧ (i,k) ∈
π}|= 1 holds for all i ∈ [n] and |{i | i ∈ [n+1]∧ (i,k) ∈
π}|= 1 holds for all k ∈ [m].

We write π(i) = k if (i,k) ∈ π and i 6= n+1; and π−1(k) = i
if (i,k) ∈ π and k 6= m+ 1. The set of all optimal LSAPE
solutions for C is denoted as Π ?(C) := argminπ∈Π(n,m) C(π).
We write LSAPE(C) := minπ∈Π(n,m) C(π) for the cost of an
optimal solution for C.

Given a matrix C ∈ R(n+1)×(m+1), an optimal solution
π ∈ Π ?(C) can be computed in O(min{n,m}2 max{n,m})
time [15], using variants of the famous Hungarian Algorithm
[38, 46]. Once one optimal solution has been found, for each
s ∈ [|Π ?(C)|], a solution set Π ?

s (C) ⊆ Π ?(C) of size s can
be enumerated in O(nm

√
n+m+s log(n+m)) time [64,65].

Greedy suboptimal solutions can be computed in O(nm) time
[55].

Node maps and feasible solutions for LSAPE are closely
related. Assume that we are given graphs G and H and an
LSAPE instance C∈R(|V G|+1)×(|V H |+1). Then it immediately
follows from Definition 2 and Definition 6 that we can iden-
tify the set Π(G,H) of all node maps between G and H with
the set Π(|V G|, |V H |) of all feasible LSAPE solutions for
C: For all i ∈ [|V G|] and all k ∈ [|V H |], we associate C’s ith

X =




1 2 3 4 5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0 0 0 0 0




X′ =




1 2 3 4 5

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 0 0 1
4 0 0 1 0 0
5 0 0 0 0 1
6 0 0 0 1 0




Fig. 3 Two LSAPE solutions of size 6× 5 in matrix representation.
If viewed as node maps between graphs G and H with |V G| = 5 and
|V H |= 6, the last row corresponds to the dummy node ε in G and the
last column corresponds to the dummy node ε in H.

row with the node ui ∈V G and C’s kth column with the node
vk ∈V H . The last row and the last column of C are associated
with the dummy node ε . Therefore, each feasible LSAPE so-
lution π for C yields an upper bound for GED(G,H), namely,
the cost c(π) of the edit path induced by π’s interpretation
as a node map.

Sometimes, it is useful to view LSAPE not as an opti-
mization problem over relations, but rather as an optimization
problem over binary matrices. With this view, LSAPE can be
equivalently defined as follows.

Definition 7 (LSAPE — alternative definition [15])
Given a matrix C ∈ R(n+1)×(m+1) with cn+1,m+1 = 0, the lin-
ear sum assignment problem with error-correction (LSAPE)
consists in the task to minimize C(X) := ∑n+1

i=1 ∑m+1
k=1 ci,kxi,k

over all binary matrices X ∈Π(n,m), where

– Π(n,m) ⊆ {0,1}(n+1)×(m+1) is defined as the set of all
feasible LSAPE solutions for C, and

– a binary matrix X ∈ {0,1}(n+1)×(m+1) is called feasible
LSAPE solution for C if and only if ∑m+1

k=1 xi,k = 1 holds
for all i ∈ [n] and ∑n+1

i=1 xi,k = 1 holds for all k ∈ [m].

Example 2 Let C ∈ R6×5 be a matrix and again consider the
node map π ∈ Π(G,H) visualized in Figure 2. The node
map π’s interpretation as a feasible LSAPE solution for C in
relational form is given by {(i, i) | i ∈ [5]}. Its matrix repre-
sentation X is shown in Figure 3, along with another feasible
LSAPE solution X′. Instead of substituting row 3 by column
3 and row 4 by column 4, X′ substitutes row 4 by column 3,
deletes row 3 and inserts column 4.

Instantiations of the paradigm LSAPE-GED now proceed
as described in Algorithm 1: In a first step, the input graphs
G and H and the edit cost functions are used to construct
an LSAPE instance C of size (|V G|+1)× (|V H |+1) such
that optimal LSAPE solutions for C induce cheap edit paths
between G and H (line 1). This construction phase is where
different instantiations of LSAPE-GED vary from each other.
Subsequently, the LSAPE instance C is solved — either
optimally or greedily — and the cost c(Pπ) of the edit path
induced by the obtained LSAPE solution π is interpreted

8 David B. Blumenthal et al.

Algorithm 1 The paradigm LSAPE-GED.
Input: Graphs G and H, node edit costs cV , edge edit costs cE .
Output: An upper bound UB and, possibly, a lower bound LB for

GED(G,H).
1: use information encoded in G, H, cV , and cE to construct LSAPE

instance C ∈ R(|V G|+1)×(|V H |+1);
2: use optimal or greedy solver to compute cheap LSAPE solution

π ∈Π(|V G|, |V H |);
3: set upper bound to UB := c(Pπ);
4: if line 1 ensures LSAPE(C)≤ ξ (G,H,cV ,cE) ·GED(G,H) then
5: if optimal solver was used in line 1 then
6: set lower bound to LB := ξ (G,H,cV ,cE)C(π);
7: return LB and UB;
8: else
9: return UB;

10: end if
11: end if
12: return UB;

as an upper bound for GED(G,H) (line 2). If the protocol
for constructing the LSAPE instance C ensures that one can
define a scaling function ξ (G,H,cV ,cE) such that

ξ (G,H,cV ,cE)LSAPE(C)≤ GED(G,H) (2)

holds for all graphs G,H ∈ G and all edit cost functions
cV and cE and an optimal LSAPE solver was used to com-
pute π , ξ (G,H,cV ,cE)C(π) is returned as a lower bound for
GED along with the upper bound derived from the induced
edit path (lines 4 to 7). Otherwise, only the upper bound is
returned (lines 9 to 12).

Assume that an instantiation of LSAPE-GED constructs
its LSAPE instance C in O(ω) time. Optimally solving C
requires O(min{|V G|, |V H |}2 max{|V G|, |V H |}) time, while
the complexity of greedily computing a cheap suboptimal
solution is O(|V G||V H |). The induced cost of the obtained
node map π can be computed in O(max{|EG|, |EH |}) time.
The heuristic’s overall runtime complexity is hence O(ω +

min{|V G|, |V H |}2 max{|V G|, |V H |} + max{|EG|, |EH |}) if
an optimal solver is used in line 2, and O(ω + |V G||V H |+
max{|EG|, |EH |}) if C is solved greedily.

5.2 Instantiations of the paradigm LSAPE-GED

Next, we present eleven algorithms for heuristically com-
puting GED that can be modeled as instantiations of the
paradigm LSAPE-GED. All heuristics compute upper bounds
for GED, and some of them also compute lower bounds.
Some of the heuristics require special edit costs, while others
can be used with general edit costs.

5.2.1 The algorithm NODE

The algorithm NODE [36] is a very simple instantiation of
LSAPE: It completely ignores the edges of the input graphs

G and H and just defines C as the node edit cost matrix
between G and H. In other words, it sets

ci,k := cV (ui,vk)

ci,|V H |+1 := cV (ui,ε)

c|V G|+1,k := cV (ε,vk)

for all (i,k) ∈ [|V G|]× [|V H |].
The time complexity of constructing C is O(|V G||V H |).

As ineq. (2) with ξ :≡ 1 holds for all graphs G,H ∈G and all
edit cost functions cV and cE , NODE computes both an upper
and a lower bound for GED.

5.2.2 The algorithm BP

Unlike NODE the algorithm BP [51] also considers edges.
Informally, this is done by adding to ci,k as defined by NODE

the optimal cost of transforming the edges that are incident
with ui in G into the edges that are incident with vk in H.

Formally, for each (i,k) ∈ [|V G|] × [|V H |], an auxil-
iary LSAPE instance Ci,k ∈ R(degG(ui)+1)×(degH (vk)+1) is con-
structed. Let (ui j)

degG(ui)
j=1 be an enumeration of ui’s neigh-

borhood NG(ui), and (vkl)
degH (vk)
l=1 be an enumeration of vk’s

neighborhood NH(vk). BP sets

ci,k
j,l := cE((ui,ui j),(vk,vkl))

ci,k
j,degH (vk)+1

:= cE((ui,ui j),ε)

ci,k
degG(ui),l

:= cE(ε,(vk,vkl))

for all (j, l)∈ [degG(i)]× [degH(i)], and computes an optimal
LSAPE solution π i,k ∈Π(degG(ui),degH(vk)). Once this has
been done for all (i,k) ∈ [|V G|]× [|V H |], the final LSAPE
instance C is constructed by setting

ci,k := cV (ui,vk)+Ci,k(π i,k)

ci,|V H |+1 := cV (ui,ε)+
degG(ui)

∑
j=1

cE((ui,ui j),ε)

c|V G|+1,k := cV (ε,vk)+
degH (vk)

∑
l=1

cE(ε,(vk,vkl))

for all (i,k) ∈ [|V G|]× [|V H |].
BP requires O(|V G||V H |∆ G,H

min
2
∆

G,H
max) time for construct-

ing C, where ∆
G,H
min := min{maxdeg(G),maxdeg(H)} and

∆
G,H
max := max{maxdeg(G),maxdeg(H)}. This construction

does not guarantee that ineq. (2) holds, which implies that
BP only returns an upper bound for GED.

Comparing heuristics for graph edit distance computation 9

5.2.3 The algorithm BRANCH

The algorithm BRANCH [8,9,57] is a slight modification of BP
that also allows for the computation of a lower bound. The
only modification is that the edge costs in the construction of
the LSAPE instance C are divided by 2, i. e., C is defined by
setting

ci,k := cV (ui,vk)+0.5 ·Ci,k(π i,k)

ci,|V H |+1 := cV (ui,ε)+0.5 ·
degG(ui)

∑
j=1

cE((ui,ui j),ε)

c|V G|+1,k := cV (ε,vk)+0.5 ·
degH (vk)

∑
l=1

cE(ε,(vk,vkl))

for all (i,k) ∈ [|V G|]× [|V H |].
Like BP, BRANCH requires O(|V G||V H |∆ G,H

min
2
∆

G,H
max) time

for constructing C. Unlike BP, the construction carried out
by BRANCH ensures that ineq. (2) with ξ :≡ 1 holds for all
graphs G,H ∈G and all edit cost functions cV and cE , which
implies that BRANCH also computes a lower bound for GED.
Furthermore, it is shown that, given fixed metric edit cost
functions cV and cE , the lower bound returned by BRANCH

is a pseudo-metric on G, i. e., is symmetric, non-negative,
respects the triangle inequality, and equals 0 if two graphs
G,H ∈G are isomorphic.

5.2.4 The algorithm BRANCH-FAST

The algorithm BRANCH-FAST suggested in [8, 9] speeds-up
BRANCH at the cost of producing a looser lower bound. For
all (i,k) ∈ [|V G|]× [|V H |], BRANCH-FAST computes Γ

i,k
E as

the size of the intersection of the multisets of edge labels
that are incident to ui in G and to vk in H, i. e., sets Γ

i,k
E :=

|`G
E JEG(ui)K∩ `H

E JEH(vk)K|. Moreover, BRANCH-FAST com-
putes the minimal deletion cost ci

min := min{cE(e,ε) | e ∈
EG(ui)}, the minimal insertion cost ck

min := min{cE(ε, f) |
f ∈ EH(vk)}, as well as the minimal substitution cost ci,k

min :=
min{cE(e, f) | (e, f) ∈ EG(ui)× EH(vk)∧ `G

E (e) 6= `H
E (f)}

for the sets EG(ui) and EH(vk) of edges that are incident to
ui in G and to vk in H, respectively. With these ingredients,
BRANCH-FAST constructs its LSAPE instance C by setting

ci,k := cV (ui,vk)+0.5 · [(∆ i,k
min−Γ

i,k
E)ci,k

min

+δdegG(ui)>degH (vk)
(∆ i,k

max−∆
i,k
min)c

i
min

+δdegG(ui)<degH (vk)
(∆ i,k

max−∆
i,k
min)c

k
min]

ci,|V H |+1 := cV (ui,ε)+0.5 ·degG(ui)ci
min

c|V G|+1,k := cV (ε,vk)+0.5 ·degH(vk)ck
min

for all (i,k) ∈ [|V G|]× [|V H |], where ∆
i,k
min := min{degG(ui),

degH(vi)} and ∆
i,k
max := max{degG(ui),degH(vi)}.

By sorting all sets of incident edge labels before pop-
ulating C, BRANCH-FAST can reduce the time complexity
of constructing C to O(max{|V G|, |V H |}∆ G,H

max log(∆ G,H
max) +

|V G||V H |∆ G,H
min ∆

G,H
max). As ineq. (2) with ξ :≡ 1 holds for each

input, BRANCH-FAST returns an upper and a lower bound
for GED. Like the lower bound produced by BRANCH, the
lower bound yielded by BRANCH-FAST is a pseudo-metric if
the underlying edit costs are metric. Furthermore, it can be
shown that BRANCH-FAST’s lower bound is never tighter than
the one computed by BRANCH. For constant edge edit costs,
BRANCH and BRANCH-FAST are equivalent.

5.2.5 The algorithm BRANCH-CONST

The algorithm BRANCH-CONST [70, 71] can be viewed as
a speed-up of BRANCH and BRANCH-FAST for constant
edge edit costs cE .1 It uses the fact that, if the edge edit
costs are constant, the minimum edge deletion, insertion,
and substitution costs employed by BRANCH-FAST do not
have to be computed, as we have ci

min = cdel
E , ck

min = cins
E ,

and ci,k
min = csub

E . This implies that the LSAPE instance C
can be constructed in O(max{|V G|, |V H |}∆ G,H

max log(∆ G,H
max)+

|V G||V H |∆ G,H
min) time. All other properties are inherited from

BRANCH and BRANCH-FAST.

5.2.6 The algorithm STAR

The algorithm STAR [68] considers the neighbors of the nodes
ui ∈ V G and vk ∈ V H when populating the cell ci,k of its
LSAPE instance C. It requires uniform edit cost functions cV
and cE and ignores the edge labels of the input graphs. Let
C be the constant such that cV (α,α ′) = cE(β ,β

′) =C holds
for all (α,α ′) ∈ (ΣV ∪{ε})× (ΣV ∪{ε}) with α 6= α ′ and
all (β ,β ′) ∈ (ΣE ∪{ε})× (ΣE ∪{ε}) with β 6= β ′. In a first
step, STAR computes Γ

i,k
V as the size of the intersection of the

multisets of node labels that are adjacent to ui in G and to
vk in H, i. e., sets Γ

i,k
V := |`G

V JNG(ui)K∩ `H
V JNH(vk)K|. STAR

then defines its LSAPE instance C by setting

ci,k :=C · [δ`G
V (ui)6=`H

V (vk)
+2∆

i,k
max−∆

i,k
min)−Γ

i,k
V]

ci,|V H |+1 :=C · [1+2degG(ui)]

c|V G|+1,k :=C · [1+2degH(vk)]

for all (i,k) ∈ [|V G|]× [|V H |], where ∆
i,k
min and ∆

i,k
min are de-

fined as in Section 5.2.4.
STAR has the same time complexity as BRANCH-CONST,

that is, STAR requires O(max{|V G|, |V H |}∆ G,H
max log(∆ G,H

max)+

|V G||V H |∆ G,H
min) time for constructing its LSAPE instance

C. Furthermore, ineq. (2) holds if the scaling function ξ

1 As BRANCH-CONST was proposed before BRANCH and BRANCH-FAST,
it is in fact more correct to say that BRANCH and BRANCH-FAST generalize
BRANCH-CONST to arbitrary edit costs. For the sake of simplicity, we
here change the order of presentation.

10 David B. Blumenthal et al.

is defined as ξ (G,H,cV ,cE) := 1/max{4,∆ G,H
max +1}. STAR

hence returns both a lower and an upper bound for GED.

5.2.7 The algorithm SUBGRAPH

The algorithm SUBGRAPH [21] considers more global in-
formation than the previously presented heuristics for con-
structing its LSAPE instance C. Given a constant K ∈ N≥1,
SUBGRAPH constructs graphlets Gi := G[

⋃K
s=0 NG

s (ui)] and
Hk := H[

⋃K
s=0 NH

s (vk)] for all (i,k) ∈ [|V G|]× [|V H |], i. e.,
associates all nodes in the input graphs to the subgraphs
which are induced by the sets of all nodes that are at dis-
tance at most K. For graphlets Gi and Hk, SUBGRAPH defines
GEDi,k(Gi,Hk) := min{c(Pπ) | π ∈Π(Gi,Hi)∧π(ui) = vk}
as the edit distance under the restriction that Gi’s root node ui
be mapped to Hk’s root node vk. SUBGRAPH then constructs
its LSAPE instance C by setting

ci,k := GEDi,k(Gi,Hk)

ci,|V H |+1 := GED(Gi,E)

c|V G|+1,k := GED(E ,Hk)

for all (i,k) ∈ [|V G|]× [|V H |], where E denotes the empty
graph.

The time complexity of SUBGRAPH’s construction phase
of its LSAPE instance C is exponential in ∆

G,H
max . This

implies that, unless maxdeg(G) and maxdeg(H) are con-
stantly bounded, SUBGRAPH does not run in polynomial time.
SUBGRAPH only computes an upper bound for GED.

5.2.8 The algorithm WALKS

The algorithm WALKS [32] requires constant and symmetric
edit cost functions cV and cE and aims at computing a tight
upper bound for GED by associating each node in the input
graphs to the set of walks of size K that start at this node.
Given constant K ∈N≥1, a node ui ∈V G, and a node vk ∈V H ,
WALKS defines W G

i and W H
k as, respectively, the sets of walks

of size K that start at ui and vk. Walks W ∈W G
i and W ′ ∈W H

k
are called similar if they encode the same sequences of node
and edge labels. Otherwise, W and W ′ are called different.

WALKS now computes the matrix products WK
G, WK

H , and
WK
×, where WG is the adjacency matrix of G, WH is the

adjacency matrix of H, and W× is the adjacency matrix of
the direct product graph G×H of G and H. G×H con-
tains a node (ui,vk) for each (i,k) ∈ [|V G|]× [|V H |] such that
`G

V (ui) = `H
V (vk). Two nodes (ui,vk) and (u j,vl) of the prod-

uct graph G×H are connected by an edge if and only if
(ui,u j) ∈ EG, (vk,vl) ∈ EH , and `G

E (ui,u j) = `H
E (vk,vl).

With the help of WK
G, WK

H , and WK
×, for each node label

α ∈ ΣV , WALKS computes an estimate ĥi\k(α) of the num-
ber of walks W ∈ W G

i that end at a node with label α and
must be substituted by a different walk W ′ ∈ W H

k . Analo-
gously, ĥk\i(α) is computed as an estimate of the number

of walks W ′ ∈ W H
k that end at a node with label α and

must be substituted by a different walk W ∈ W G
i . More-

over, WALKS computes an estimate r̂i\k := ∑α∈ΣV ĥi\k(α)−
min{ĥi\k(α), ĥk\i(α)} of the number of walks in W ∈ W G

i
that must be substituted by a different walk W ′ ∈ W H

i
that does not end at the same node label, and an estimate
r̂k\i :=∑α∈ΣV ĥk\i(α)−min{ĥi\k(α), ĥk\i(α)} of the number
of walks in W ′ ∈W H

k that must be substituted by a different
walk W ∈W G

i that does not end at the same node label. With
these ingredients, WALKS constructs its LSAPE instance C by
setting

ci,k := [(δ`G
V (ui)6=`H

V (vk)
+K−1)csub

V

+Kcsub
E] ·∑α∈ΣV min{ĥi\k(α), ĥk\i(α)}

+[(δ`G
V (ui)6=`H

V (vk)
+K)csub

V

+Kcsub
E] ·min{r̂i\k, r̂k\i}

+[(δ`G
V (ui)6=`H

V (vk)
+K)cdel

V +Kcdel
E] · |r̂i\k− r̂k\i|

ci,|V H |+1 := [(δ`G
V (ui)6=`H

V (vk)
+K)cdel

V +Kcdel
E] · |W G

i |
c|V G|+1,k := [(δ`G

V (ui)6=`H
V (vk)

+K)cdel
V +Kcdel

E] · |W H
k |

for all (i,k) ∈ [|V G|]× [|V H |].
WALKS requires O((|V G||V H |)ω) time for computing its

LSAPE instance C, where O(nω) is the complexity of multi-
plying two matrices with n rows and n columns. The asymp-
totically fastest matrix multiplication algorithms achieve
ω < 2.38 [40]; the fastest practically useful matrix multi-
plication algorithm runs in O(nlog2(7))≈ O(n2.81) time [63].
WALKS only computes an upper bound for GED.

5.2.9 The algorithm RING

Like SUBGRAPH and WALKS, the algorithm RING [4, 6] aims
at computing a tight upper bound for GED by consider-
ing enlarged local structures. Given constant K ∈ N≥1, a
node ui ∈ V G, and a node vk ∈ V H , RING uses breadth-first
search to construct rings RG

i := (L G
l (ui))

K−1
l=0 and RH

k :=
(L H

l (vk))
K−1
l=0 whose lth layers are defined as the triplets

L G
l (ui) := (NG

l (ui),OEG
l (ui), IEG

l (ui)) and L H
l (vk) :=

(NH
l (vk),OEH

l (vk), IEH
l (vk)), respectively. OEG

l (ui) := EG∩
(NG

l (ui)×NG
l+1(ui)) is defined the set of edges from G that

connect nodes at distance l from ui to nodes at distance l+1,
while the set IEG

l (ui) := EG∩(NG
l (ui)×NG

l (ui)) contains all
edges that connect two nodes at distance l. The edge sets
OEH

l (vk) and IEH
l (vk) are defined analogously.

In the next step, RING defined ring distances
dR(RG

i ,R
H
k) := ∑K−1

l=0 λldL (L G
l (ui),L H

l (vk), where
the layer distance dL is defined as dL (L G

l (ui),L H
l (vk) :=

α0dV (NG
l (ui),NH

l (vk)) + α1dE(OEG
l (ui),OEH

l (vk)) +

α2dE(IEG
l (ui), IEH

l (vk)), (λl)l ∈ RK
≥0 and (αs)s ∈ R3

≥0 are
simplex vectors, dV is a distance measure between node
sets, and dE is a distance measure between edge sets. RING

Comparing heuristics for graph edit distance computation 11

suggests a strategy that uses a blackbox optimization for
intelligently choosing the meta-parameters λl , αs, and K.

Three different definitions of the node set distance dV
are suggested. The first proposal is to use the node edit cost
function cV to construct an auxiliary LSAPE instance Ci,k

for the node sets NG
l (ui) and NH

l (vk), and then to define
dV (NG

l (ui),NH
l (vk)) := LSAPE(Ci,k). Alternatively, it is pro-

posed to define dV (NG
l (ui),NH

l (vk)) := LSAPE(Ci,k), where
LSAPE(Ci,k) is a proxy for LSAPE(Ci,k) which is efficiently
computed via greedy LSAPE solvers or fast heuristics based
on multiset intersection. The edge set distance measure dE
can be defined analogously. RING then constructs its LSAPE
instance C by setting

ci,k := dR(RG
i ,R

H
k)

ci,|V H |+1 := dR(RG
i ,E)

c|V G|+1,k := dR(E ,RH
k)

for all (i,k) ∈ [|V G|]× [|V H |], where E := (/0, /0, /0)K−1
l=0 is the

empty ring of size K.
Constructing all rings for a graph G requires

O(|V G|(|V G|+ |EG|)) time. Let Ω be the maximum size
of a node or edge set that appears in one of the rings rooted at
the nodes of G and H. Then, once all rings for G and H have
been constructed, RING populates its LSAPE instance C in
O(|V G||V H |Ω 3) time if an optimal LSAPE solver is used for
computing dV and dE , and in O(|V G||V H |Ω 2) time if greedy
or multiset intersection based heuristics are employed. RING
only computes an upper bound for GED.

5.2.10 The algorithm RING-ML

The algorithm RING-ML [6] is similar to RING in that
it also decomposes the input graphs into rings rooted
at their nodes. However, instead of computing distances
between the rings, RING-ML constructs a feature vectors
xi,k := (xG,H ,x0, . . . ,xl , . . . ,xK−1) ∈ R6K+10 for all (i,k) ∈
[|V G|+ 1]× [|V H |+ 1]. The features contained in xl ∈ R6

express the dissimilarity of the lth layers of the rings RG
i

and RH
k . They are defined as xl

0 := |NG
l (ui)| − |NH

l (vk)|,
xl

1 := |OEG
l (ui)| − |OEH

l (vk)|, xl
2 := |IEG

l (ui)| − |IEH
l (vk)|,

xl
3 := dV (NG

l (ui),NH
l (vk)), xl

4 := dE(OEG
l (ui),OEH

l (vk)),
and xl

5 := dE(IEG
l (ui), IEH

l (vk)), where u|V G|+1 := v|V H |+1 :=
ε . The vector xG,H contains global features that are the same
for all (i,k)∈ [|V G|]× [|V H |]: the number of nodes and edges
of G and H, the average costs for deleting nodes and edges
from G, the average costs for inserting nodes and edges into
H, and the average costs for substituting nodes and edges in
G by nodes and edges in H.

Given a training set, RING-ML defines a node assignment
(u,v) ∈ (V G∪{ε})× (V H ∪{ε}) as good if and only if there
is a node map π ∈ Π(G,H) with c(Pπ) = GED(G,H) and
(u,v) ∈ π . Next, RING-ML learns a function p? that estimates

the probability that a node assignment is good. This is done
by computing optimal or close-to-optimal node maps be-
tween all graphs contained in a training set and then training
a support vector classifier with probability estimates and RBF
kernel, a one-class support vector machine with RBF kernel,
or a fully connected, feedforward neural network on the gen-
erated training data. Once the probability estimate p? has
been learned, RING-ML constructs its LSAPE instance C by
setting

ci,k := 1− p?(xi,k)

ci,|V H |+1 := 1− p?(xi,|V H |+1)

c|V G|+1,k := 1− p?(x|V
G|+1,k)

for all (i,k) ∈ [|V G|]× [|V H |].
Depending on the choice of the node and edge set dis-

tances dV and dE , RING-ML requires O(|V G||V H |Ω 3) or
O(|V G||V H |Ω 2) time for constructing all feature vectors for
the graphs G and H. The time complexity of populating C
once the feature vectors have been constructed depends on
the employed machine learning technique. RING-ML only
computes an upper bound for GED.

5.2.11 The algorithm PREDICT

The algorithm PREDICT [6, 54] differs from RING-ML only
in that it uses different feature vectors xi,k. For computing its
feature vectors, PREDICT first constructs an auxiliary LSAPE
instance CBP as done by the algorithm BP presented in Sec-
tion 5.2.2. Subsequently, for all (i,k) ∈ [|V G|+1]× [|V H |+
1], PREDICT defines xi,k := (xG,H ,xi,xk,cV (ui,vk),cBPi,k −
cV (ui,vk)) ∈ R24, where u|V G|+1 := v|V H |+1 := ε . The vec-
tor xG,H ∈ R4 contains four global features: the maximum,
the minimum, the average, and the deviation of CBP. The
vector xi ∈R9 contains nine features associated to the ith row
of CBP: its maximum, its minimum, its average, its deviation,
its uniqueness, its divergence, its leader, its interval, and its
outlierness. Analogously, xk ∈R9 contains nine features asso-
ciated to the kth row of CBP. Finally, xi,k contains features for
the node and the edge edit costs which are induced by assign-
ing ui to vk. Once all feature vectors have been constructed,
PREDICT proceeds exactly like RING-ML.

5.3 Extensions of the paradigm LSAPE-GED

Next, we present two extensions of the paradigm LSAPE-GED.
Both of them can be used to improve all of the heuristics
described in Section 5.2 above.

5.3.1 The extension CENTRALITIES

Assume that an LSAPE instance C ∈ R(|V G|+1)×(|V H |+1) has
been constructed by one of the instantiations of LSAPE-GED

12 David B. Blumenthal et al.

presented in Section 5.2 above. In [25, 53], it is suggested to
define a node centrality measure φ that maps central nodes
to large and non-central nodes to small non-negative reals.
Suggested centrality measures are, for instance, the degrees,
the eigenvector centralities [11], and the pagerank centralities
[18] of the nodes of the input graphs.

With the help of φ , the upper bound for GED induced
by C can be improved. To this purpose, a second LSAPE
instance C′ ∈ R(|V G|+1)×(|V H |+1) is constructed by setting

c′i,k := (1− γ) · ci,k + γ · |φ(ui)−φ(vk)|
c′i,|V H |+1 := (1− γ) · ci,|V H |+1 + γ ·φ(ui)

c′|V G|+1,k := (1− γ) · c|V G|+1,k + γ ·φ(vk)

for all (i,k) ∈ [|V G|]× [|V H |], where 0 ≤ γ ≤ 1 is a meta-
parameter. Subsequently, two cheap or optimal LSAPE so-
lutions π,π ′ ∈ Π(|V G|, |V H |) for C and C′ are computed,
and the returned upper bound for GED is improved from
UB := c(Pπ) to UB := min{c(Pπ),c(Pπ ′)}.2

5.3.2 The extension MULTI-SOL

Given a constant K ∈ N≥1, the extension MULTI-SOL of the
paradigm LSAPE-GED suggested in [6, 26] improves the up-
per bound returned by instantiations of LSAPE-GED by con-
sidering not only one, but rather up to K optimal LSAPE
solutions. MULTI-SOL cannot be used in combination with
greedy LSAPE solvers, as it requires that the LSAPE instance
C is solved optimally in line 2 of Algorithm 1. Once the first
optimal LSAPE solution π?

0 ∈ Π ?(C) has been computed,
MULTI-SOL uses a variant of the algorithm suggested in [64]
for enumerating K′ := min{K, |Π ?(C)|}−1 optimal LSAPE
solutions {π?

l }K′
l=1, all of which are pairwise different and

different from π?
0 . Since K is a constant, this enumeration

requires only O(|V G|+ |V H |) additional time. Subsequently,
the upper bound for GED is improved from UB := c(Pπ?

0
) to

UB := minK′
l=0 c(Pπ?

l
).

6 Heuristics based on linear programming

In this section, we first introduce the paradigm LP-GED,
which generalizes heuristics that use linear programming for
lower and upper bounding GED (Section 6.1). Subsequently,
we present heuristics that can be modeled as instantiations of
LP-GED (Section 6.2).

2 In the original publications, this technique is suggested for the
LSAPE instance produced by BP (cf. Section 5.2.2). It can, however, be
employed in combination with the LSAPE instances produced by any
instantiation of LSAPE-GED.

min ∑
ui∈V G

∑
vk∈V H

cV (ui,vk)xsub
i,k

+ ∑
ui∈V G

cV (ui,ε)xdel
i + ∑

vk∈V H

cV (ε,vk)xins
k

+ ∑
(ui,u j)∈EG

∑
(vk ,vl)∈EH

cE((ui,u j),(vk,vl))ysub
i, j,k,l

+ ∑
(ui,u j)∈EG

cE((ui,u j),ε)ydel
i, j + ∑

(vk ,vl)∈EH

cE(ε,(vk,vl))yins
k,l

s. t. xdel
i + ∑

vk∈V H

xsub
i,k = 1 ∀ui ∈V G

xins
k + ∑

ui∈V G

xsub
i,k = 1 ∀vk ∈V H

ydel
i, j + ∑

(vk ,vl)∈EH

ysub
i, j,k,l = 1 ∀(ui,u j) ∈ EG

yins
k,l + ∑

(ui,u j)∈EG

ysub
i, j,k,l = 1 ∀(vk,vl) ∈ EH

ysub
i, j,k,l − xsub

i,k xsub
j,l − xsub

i,l xsub
j,k = 0 ∀((vk,vl),(vk,vl)) ∈ EG×EH

xsub ∈ {0,1}|V G|×|V H |, xdel ∈ {0,1}|V G|, xins ∈ {0,1}|V H |

ysub ∈ {0,1}|EG|×|EH |, ydel ∈ {0,1}|EG|, yins ∈ {0,1}|EH |

Fig. 4 A quadratic programming formulation of GED.

6.1 The paradigm LP-GED

Recall the alternative Definition 4 of GED, which defines
the problem of computing GED as a minimization problem
over the set of all node maps between two graphs G and
H. This definition can straightforwardly be transformed into
the quadratic programming formulation of GED detailed in
Figure 4 [16,49]. The binary decision variables xsub

i,k , xdel
i , and

xins
k indicate, respectively, whether the node ui ∈V G is to be

substituted by the node vk ∈V H , whether ui is to be deleted,
and whether vk is to be inserted. Analogously, the binary
decision variables ysub

i, j,k,l , ydel
i, j , and yins

k,l indicate, respectively,
whether the edge (ui,u j)∈EG is to be substituted by the edge
(vk,vl) ∈ EH , whether (ui,u j) is to be deleted, and whether
(vk,vl) is to be inserted. The quadratic constraint ysub

i, j,k,l −
xsub

i,k xsub
j,l − xsub

i,l xsub
j,k = 0 ensures that (ui,u j) is substituted by

(vk,vl) if and only if the node map π encoded by xsub, xdel,
and xins satisfies π(ui,u j) = (vk,vl).

Heuristics that use linear programs (LP) for upper and
lower bounding GED proceed as described in Algorithm 2:
In a first step, the quadratic program shown in Figure 4 is lin-
earized to obtain a (mixed) integer linear programming (MIP)
formulation F̂ (line 1). This linearization phase is where dif-
ferent instantiations of LP-GED vary from each other. Next,
all integrality constraints contained in F̂ are continuously
relaxed, which yields in an LP F (line 2). Subsequently, F is
solved and the lower bound LB is set to the optimal solution
of F .

Comparing heuristics for graph edit distance computation 13

Algorithm 2 The paradigm LP-GED.
Input: Graphs G and H, node edit costs cV , edge edit costs cE .
Output: An upper bound UB and a lower bound LB for GED(G,H).
1: construct linearization of the quadratic programming formulation

detailed in Figure 4;
2: relax all integrality constraints of the obtained MIP;
3: solve the resulting LP and set LB to the obtained minimum;
4: use optimal continuous solution to construct projection problem

C ∈ [0,1](|V
G|+1)×(|V H |+1);

5: compute π? ∈ argminπ∈Π(|V G|,|V H |) C(π);
6: set UB := c(Pπ?);
7: return LB and UB;

In the literature, LP based heuristics for GED are usu-
ally described as algorithms that only yield lower bounds.
However, they can straightforwardly be extended to also com-
pute upper bounds. To that purpose, after solving the LP F ,
an LSAPE instance C ∈ R(|V G|+1)×(|V H |+1) is constructed,
whose optimal solutions π? ∈ argminπ∈Π(|V G|,|V H |) C(π) can
be viewed as projections of the previously computed opti-
mal and possibly continuous solution for F to the discrete
domain (line 4). Subsequently, an optimal solution π? for C
is computed (line 5), the upper bound UB is set to its induced
edit cost (line 6), and LB and UB are returned (line 7).

In theory, the LP F can be solved in O(var(F)3.5 enc(F))

time, where var(F) is the number of variables contained in
F and enc(F) is the number of bits needed to encode F [37].
However, popular LP solvers such as IBM CPLEX or Gurobi
Optimization often use asymptotically slower but practically
faster algorithms. Solving the projection problem C requires
O(min{|V G|, |V H |}2 max{|V G|, |V H |}) time.

6.2 Instantiations of the paradigm LP-GED

We present four different linearizations of the quadratic pro-
gram shown in Figure 4. The first three linearizations pre-
sented in Sections 6.2.1 to 6.2.3 are designed for general
graphs and edit costs. They hence not only yield upper and
lower bounds for GED as detailed in Algorithm 2, but also
exact algorithms if fed into exact MIP solvers. The last lin-
earization presented in Section 6.2.4 requires the edge edit
costs to be constant and symmetric. Furthermore, it is de-
signed for graphs without edge labels. If used with graphs
whose edges are labeled, it hence does not yield an exact
algorithm for GED, even if fed into an exact MIP solver.

6.2.1 The linearization F1

The integer linear program F1 [43, 44] and displayed
in Figure 5 is a straightforward linearization of the
quadratic programming formulation shown in Figure 4. F1
has |V G||V H |+ |V G|+ |V H |+ |EG||EH |+ |EG|+ |EH | =
O(|EG||EH |) binary variables and |V G| + |V H | + |EG| +

min ∑
ui∈V G

∑
vk∈V H

cV (ui,vk)xsub
i,k

+ ∑
ui∈V G

cV (ui,ε)xdel
i + ∑

vk∈V H

cV (ε,vk)xins
k

+ ∑
(ui,u j)∈EG

∑
(vk ,vl)∈EH

cE((ui,u j),(vk,vl))ysub
i, j,k,l

+ ∑
(ui,u j)∈EG

cE((ui,u j),ε)ydel
i, j + ∑

(vk ,vl)∈EH

cE(ε,(vk,vl))yins
k,l

s. t. xdel
i + ∑

vk∈V H

xsub
i,k = 1 ∀ui ∈V G

xins
k + ∑

ui∈V G

xsub
i,k = 1 ∀vk ∈V H

ydel
i, j + ∑

(vk ,vl)∈EH

ysub
i, j,k,l = 1 ∀(ui,u j) ∈ EG

yins
k,l + ∑

(ui,u j)∈EG

ysub
i, j,k,l = 1 ∀(vk,vl) ∈ EH

ysub
i, j,k,l − xsub

i,k − xsub
k,l ≤ 0 ∀((vk,vl),(vk,vl)) ∈ EG×EH

ysub
i, j,k,l − xsub

j,l − xsub
j,k ≤ 0 ∀((vk,vl),(vk,vl)) ∈ EG×EH

xsub ∈ {0,1}|V G|×|V H |, xdel ∈ {0,1}|V G|, xins ∈ {0,1}|V H |

ysub ∈ {0,1}|EG|×|EH |, ydel ∈ {0,1}|EG|, yins ∈ {0,1}|EH |

Fig. 5 The linearization F1 suggested in [43, 44].

|EH |+2|EG||EH |= O(|EG||EH |) constraints. Given an opti-
mal solution (xsub,xdel,xins,ysub,ydel,yins) for the continuous
relaxation of F1, the projection problem C is defined as

ci,k := 1− xsub
i,k

ci,|V H |+1 := 1− xdel
i

c|V G|+1,k := 1− xins
k

for all (i,k) ∈ [|V G|]× [|V H |].

6.2.2 The linearization F2

The linearization F2 [44] displayed in Figure 6 improves
F1 by reducing the number of variables and constraints. It
uses the fact that the node and edge substitution variables
xsub and ysub implicitly encode the node and edge deletion
and insertion variables xdel, xins, ydel, and yins. F2 has |V G|+
|V H |+ |V H ||EG|= O(|V H ||EG|) constraints and |V G||V H |+
|EG||EH |= O(|EG||EH |) binary variables. Given an optimal
solution (xsub,ysub) for the continuous relaxation of F2, the
projection problem C is defined as

ci,k := 1− xsub
i,k

ci,|V H |+1 := ∑
vk∈V H

xsub
i,k

c|V G|+1,k := ∑
ui∈V G

xsub
i,k

for all (i,k) ∈ [|V G|]× [|V H |].

14 David B. Blumenthal et al.

min ∑
uiV G

∑
vk∈V H

c′V (ui,vk)xsub
i,k

+ ∑
(ui,u j)∈EG

∑
(vk ,vl)∈EH

c′E((ui,u j),(vk,vl))ysub
i, j,k,l +C

s. t. ∑
vk∈V H

xsub
i,k ≤ 1 ∀ui ∈V G

∑
ui∈V G

xsub
i,k ≤ 1 ∀vk ∈V H

∑
(vk ,vl)∈EH

ysub
i, j,k,l − xsub

i,k − xsub
j,k ≤ 0 ∀(vk,(ui,u j)) ∈V H ×EG

xsub ∈ {0,1}|V G|×|V H |, ysub ∈ {0,1}|EG|×|EH |

Fig. 6 The linearization F2 suggested in [44]. The modi-
fied edit costs c′V and c′E and the constant C are defined as
c′V (ui,vk) := cV (ui,vk)− cV (ui,ε)− cV (ε,vk), c′E((ui,u j),(vk,vl)) :=
cE((ui,u j),(vk,vl)) − cE((ui,u j),ε) − cE(ε,(vk,vl)), and
C := ∑ui∈V G cV (ui,ε)+∑vk∈V H cV (ε,vk)+∑(ui,u j)∈EG cE((ui,u j),ε)+

∑(vk ,vl)∈EH cE(ε,(vk,vl)).

6.2.3 The linearization COMPACT-MIP

The linearization COMPACT-MIP [10] and displayed in Fig-
ure 7 makes do without edge variables. Instead, it con-
tains continuous variables zsub, zdel, zins, which, at the op-
timum, contain the edit costs which are induced by the
node assignment π encoded by optimal binary node vari-
ables xsub, xdel, and xins. COMPACT-MIP has |V G||V H |+
|V G|+ |V H | = O(|V G||V H |) binary variables, |V G||V H |+
|V G| + |V H | = O(|V G||V H |) continuous variables, and
|V G||V H |+ |V G|+ |V H | = O(|V G||V H |) constraints. It is
hence smaller than both F1 and F2. Given an optimal solution
(xsub,xdel,xins,zsub,zdel,zins) for the continuous relaxation of
COMPACT-MIP, the projection problem C is defined as

ci,k := 1− xsub
i,k

ci,|V H |+1 := 1− xdel
i

c|V G|+1,k := 1− xins
k

for all (i,k) ∈ [|V G|]× [|V H |].

6.2.4 The linearization ADJ-IP

The linearization ADJ-IP [36] displayed in Figure 8 requires
the edge edit costs cE to be constant and symmetric. Fur-
thermore, it is designed for graphs without edge labels.
ADJ-IP has 3(|V G|+ |V H |)2 = O((|V G|+ |V H |)2) binary
variables and 2|V G|+2|V H |+ |V G||V H |+ |V G|2 + |V H |2 =
O((|V G|+ |V H |)2) constraints. Note that ADJ-IP sets all
edge substitution costs to 0. If used with graphs whose edges
are labeled, it hence ignores all edit costs induced by substi-
tuting an edge (ui,u j) ∈ EG by an edge (vk,vl) ∈ EH with
`G

E (ui,u j) 6= `H
E (vk,vl). Given an optimal solution (x,s, t) for

min ∑
ui∈V G

∑
vk∈V H

zsub
i,k + ∑

ui∈V G

zdel
i + ∑

vk∈V H

zins
k

s. t. xdel
i + ∑

vk∈V H

xsub
i,k = 1 ∀ui ∈V G

xins
k + ∑

ui∈V G

xsub
i,k = 1 ∀vk ∈V H

∑
u j∈NG(ui)

∑
vl∈NH (vk)

cE((ui,u j),(vk,vl))

2
xsub

j,l

+ ∑
u j∈NG(ui)

∑
vl /∈NH (vk)

cE((ui,u j),ε)

2
xsub

j,l

+ ∑
u j /∈NG(ui)

∑
vl∈NH (vk)

cE(ε,(vk,vl))

2
xsub

j,l

+ ∑
u j∈NG(ui)

cE((ui,u j),ε)

2
xdel

j

+ ∑
vl∈NH (vk)

cE(ε,(vk,vl))

2
xins

l

+ cV (ui,vk)−asub
i,k (1− xsub

i,k)− zsub
i,k ≤ 0 ∀(ui,vk) ∈V G×V H

∑
u j∈NG(ui)

∑
vl∈V H

cE((ui,u j),ε)

2
xsub

j,l

+ ∑
u j∈NG(ui)

cE((ui,u j),ε)

2
xdel

j

+ cV (ui,ε)−adel
i (1− xdel

i)− zdel
i ≤ 0 ∀ui ∈V G

∑
u j∈V G

∑
vl∈NH (vk)

cE(ε,(vk,vl))

2
xsub

j,l

+ ∑
vl∈NH (vk)

cE(ε,(vk,vl))

2
xins

l

+ cV (ε,vk)−ains
k (1− xins

k)− zins
k ≤ 0 ∀vk ∈V H

xsub ∈ {0,1}|V G|×|V H |, xdel ∈ {0,1}|V G|, xins ∈ {0,1}|V H |

zsub ∈ R|V
G|×|V H |
≥0 , zdel ∈ R|V

G|
≥0 , zins ∈ R|E

H |
≥0

Fig. 7 The linearization COMPACT-MIP suggested in [10]. For
all (ui,vk) ∈ V G × V H , the constants asub

i,k , adel
i , and ains

k are de-
fined as asub

i,k := 0.5 · [∑u j∈NG(ui) ∑vl∈NH (vk)
cE((ui,u j),(vk,vl)) +

∑u j∈NG(ui)
(|V H | − degH(vk) + 1)cE((ui,u j),ε) + ∑vl∈NH (vk)

(|V G| −
degG(ui) + 1)cE(ε,(vk,vl))], adel

i := 0.5 · ∑u j∈NG(ui)
(|V H | +

1)cE((ui,u j),ε), and ains
k := 0.5 ·∑vl∈NH (vk)

(|V G|+1)cE(ε,(vk,vl)).

the continuous relaxation of ADJ-IP, the projection problem
C is defined as

ci,k := 1− xi,k

ci,|V H |+1 := ∑
vk∈V H

xi,k

c|V G|+1,k := ∑
ui∈V G

xi,k

for all (i,k) ∈ [|V G|]× [|V H |].

Comparing heuristics for graph edit distance computation 15

min ∑
ui∈V G

∑
vk∈V H

[cV (ui,vk)xi,k +
cdel

E
2

(si,k + ti,k)]

+ ∑
ui∈V G

∑
u j∈V G

[cV (ui,ε)xi,|V H |+ j +
cdel

E
2

(si,|V H |+ j + ti,|V H |+ j)]

+ ∑
vl∈V H

∑
vk∈V H

[cV (ε,vk)x|V G|+l,k +
cdel

E
2

(s|V G|+l,k + t|V G|+l,k)]

s. t. ∑
u j∈V G

xi,|V H |+ j + ∑
vk∈V H

xi,k = 1 ∀ui ∈V G

∑
vk∈V H

x|V G|+k,|V H |+i + ∑
u j∈V G

x j,|V H |+i = 1 ∀ui ∈V G

∑
vl∈V H

x|V G|+l,k + ∑
ui∈V G

xi,k = 1 ∀vk ∈V H

∑
ui∈V G

x|V G|+k,|V H |+i + ∑
vl∈V H

x|V G|+k,l = 1 ∀vk ∈V H

si,k− ti,k + ∑
u j∈NG(ui)

x j,k− ∑
vl∈NH (vk)

xi,l = 0 ∀(ui,vk) ∈V G×V H

si,|V H |+ j− ti,|V H |+ j + ∑
ur∈NG(ui)

xr,|V H |+ j = 0 ∀(ui,u j) ∈V G×V G

s|V G|+l,k− t|V G|+l,k− ∑
vs∈NH (vk)

x|V G|+l,s = 0 ∀(vl ,vk) ∈V H ×V H

x,s, t ∈ {0,1}(|V G|+|V H |)×(|V H |+|V G|)

Fig. 8 The linearization ADJ-IP suggested in [36].

7 Heuristics based on local search

In this section, we first introduce the paradigm LS-GED,
which generalizes heuristics that use variants of local search
for upper bounding GED (Section 7.1). Subsequently, we
present heuristics that can be modeled as instantiations (Sec-
tion 7.2) and extensions (Section 7.2) of LS-GED.

7.1 The paradigm LS-GED

Algorithm 3 shows how to compute an upper bound for GED
via a variant of local search. In a first step, an initial node
map π ∈Π(G,H) is generated randomly or constructed, for
instance, by calling an instantiation of LSAPE-GED (line 1).
Subsequently, a variant of local search is run, which produces
an improved node map π ′ ∈ Π(G,H) with c(Pπ ′) ≤ c(Pπ)

(line 2). This refinement phase is where different instanti-
ations of LS-GED vary from each other. Once π ′ has been
computed, UB := c(Pπ ′) is returned (lines 3 to 4).

7.2 Instantiations of the paradigm LS-GED

In the sequel, we present five algorithms for heuristically
computing GED that can be modeled as instantiations of
the paradigm LS-GED. All of them yield upper but no lower
bounds for GED and can be used with general edit costs.

Algorithm 3 The paradigm LS-GED.
Input: Graphs G and H, node edit costs cV , edge edit costs cE .
Output: An upper bound UB for GED(G,H).
1: compute or randomly construct initial node mao π ∈Π(G,H);
2: use information encoded in G, H, cV , and cE to construct node map

π ′ ∈Π(G,H) with c(Pπ ′)≤ c(Pπ) via local search starting at π;
3: set upper bound to UB := c(Pπ ′);
4: return UB;

7.2.1 The algorithm REFINE

Given an initial node map π ∈ Π(G,H), the algorithm
REFINE [12, 68] proceeds as follows: Let ((us,vs))

|π|
s=1 be an

arbitrary ordering of the node assignments contained in π , let
u|π|+1 := v|π|+1 := ε , and let Gπ :=(V G

π ∪V H
π ,Aπ) be an auxil-

iary directed bipartite graph, where V G
π

:= {us | s∈ [|π|+1]},
V H

π
:= {vs | s ∈ [|π|+1]}, and Aπ := π ∪{(u|π|+1,v|π|+1)}∪

{(vs,us′) | (s,s′) ∈ [|π|+ 1]× [|π|+ 1]∧ s 6= s′}. In other
words, Gπ contains a forward arc for each assignment con-
tained in π , a forward arc between the additionally added
dummy nodes u|π|+1 and v|π|+1, and backward arcs between
nodes in V G

π and V H
π that are not assigned to each other

by π . Note that, by definition of a node map, V G
π contains

each node u ∈ V G exactly once, V H
π contains each node

v ∈ V H exactly once, but both V G
π and V H

π might contain
multiple copies of the dummy node ε . A directed cycle
C ⊆ Aπ in Gπ with |C|= 4 is called swap. There are exactly(|π|+1

2

)
= O((|V G|+ |V H |)2) swaps.

For each swap C = {(us,vs),(vs,us′),(us′ ,vs′),(vs′ ,us)},
REFINE checks if the swapped node map π ′ := (π \
{(us,vs),(us′ ,vs′)})∪ {(us,vs′),(us′ ,vs)} induces a smaller
upper bound than π . If, at the end of the for-loop, a node
map π ′ has been found that improves the upper bound, π is
updated to the node map that yields the largest improvement
and the process iterates. Otherwise, the output node map π ′

is set to π and REFINE terminates.
For checking if a swap C improves the induced upper

bound, it suffices to consider the edges that are incident
with the nodes involved in the swap. Therefore, one itera-
tion of REFINE runs in O((|V G|+ |V H |)2∆

G,H
max) time, where

∆
G,H
max := max{maxdeg(G),maxdeg(H)}. Since the induced

upper bound improves in each iteration, this gives an overall
runtime complexity of O(UB(|V G|+ |V H |)2∆

G,H
max) for inte-

gral edit costs, where UB is the initial upper bound.

7.2.2 The algorithm K-REFINE

The algorithm K-REFINE [12] is a straightforward extension
of the algorithm REFINE presented in the previous section.
Let π ∈ Π(G,H) be an initial node map and K ∈ N≥2 be
a constant. Furthermore, let the auxiliary directed bipartite
graph Gπ be defined as in the previous section. A directed
cycle C ⊆ Aπ in Gπ with |C|= 2K′ is called swap of size K′,

16 David B. Blumenthal et al.

where K′ ∈ {2, . . . ,K}. There are exactly
(|π|+1

K′
)
(K′−1)! =

O((|V G|+ |V H |)K′) swaps of size K′.

Starting with K′ := 2, K-REFINE checks if there is a swap
of size K′ that improves the induced upper bound. If so, π

is updated to the node map obtained by the swap of size K′

that yields the largest improvement, K′ is reset to 2, and the
process iterates. If no swap of size K′ yields an improvement,
K-REFINE checks whether K′ equals the maximal swap size
K. If this is the case, the output node map π ′ is set to π and
K-REFINE terminates. Otherwise, K-REFINE increments K′

and continues the search.

One iteration of K-REFINE runs in O((|V G| +
|V H |)K∆

G,H
max) time. For integral edit costs, K-REFINE’s over-

all runtime complexity is hence O(UB(|V G|+ |V H |)K∆
G,H
max),

where UB is the initial upper bound.

7.2.3 The algorithm BP-BEAM

Given an initial node map π ∈ Π(G,H) and a constant
K ∈ N≥1, the algorithm BP-BEAM [56] starts by producing a
random ordering ((us,vs))

|π|
s=1 of the node assignments con-

tained in π . BP-BEAM now constructs an output node map π ′

with c(Pπ ′)≤ c(Pπ ′) by partially traversing an implicitly con-
structed tree T via beam search with beam size K. The nodes
of T are tuples (π ′′,c(Pπ ′′),s), where π ′′ ∈Π(G,H) is an or-
dered node map, c(Pπ ′′) is its induced edit cost, and s ∈ [|π|]
is the depth of the tree node in T . Tree nodes (π ′′,c(Pπ ′′),s)
with s = |π| are leafs, and the children of an inner node
(π ′′,c(Pπ ′′),s) are {(swap(π ′′,s,s′),c(Pswap(π ′′,s,s′)),s + 1) |
s′ ∈ {s, . . . , |π|}}. Here, swap(π ′′,s,s′) is the ordered node
map obtained from π ′′ by swapping the assignments (us,vs)
and (us′ ,vs′), i. e., setting vs := vs′ and vs′ := vs.

At initialization, BP-BEAM sets the output node map π ′

to the initial node map π . Furthermore, BP-BEAM maintains
a priority queue q of tree nodes which is initialized as q :=
{(π,c(Pπ),1)} and sorted w. r. t. non-decreasing induced edit
cost of the contained node maps. As long as q is non-empty,
BP-BEAM extracts the top node (π ′′,c(Pπ ′′),s) from q and
updates the output node map π ′ to π ′′ if c(Pπ ′′)< c(Pπ ′). If
s < |π|, BP-BEAM adds all of its children to the priority queue
q and subsequently discards all but the first K tree nodes
contained in q. Once q is empty, the cheapest encountered
node map π ′ is returned.

By construction of T , we know that at most 1 +

K(|π|−1) = O(|V G|+ |V H |) tree nodes are extracted from
q. For each extracted inner node, BP-BEAM has to con-
structed all children, which requires O((|V G|+ |V H |)∆ G,H

max)

time, and subsequently sort q, which requires O((|V G|+
|V H |) log(|V G| + |V H |)) time. BP-BEAM hence runs in
O((|V G|+ |V H |)2(∆ G,H

max + log(|V G|+ |V H |))) time.

7.2.4 The algorithm IBP-BEAM

Since the size of the priority queue q is restricted to K, which
parts of the search tree T are visited by BP-BEAM crucially
depends on the ordering of the initial node map π . Therefore,
BP-BEAM can be improved by considering not one but sev-
eral initial orderings. The algorithm IBP-BEAM suggested
in [27] does exactly this. That is, given a constant num-
ber of iterations I ∈ N≥1, IBP-BEAM runs BP-BEAM with
I different randomly created orderings of the initial node
map π and then returns the cheapest node map π ′ encoun-
tered in one of the iterations. Therefore, IBP-BEAM runs in
O(I(|V G|+ |V H |)2(∆ G,H

max + log(|V G|+ |V H |))) time.

7.2.5 The algorithm IPFP

The algorithm IPFP [42] can be seen as an adapta-
tion of the seminal Frank-Wolfe algorithm [30] to cases
where an integer solution is required. Its adaptation to
the case of GED, first suggested in [16], implicitly con-
structs a matrix Q ∈ R((|V G|+1)·(|V H |+1))×((|V G|+1)·(|V H |+1))

such that minX∈Π(|V G|,|V H |) vec(X)TQvec(X) = GED. Re-

call that Π(|V G|, |V H |) ∈ {0,1}(|V G|+1)×(|V H |+1) is the set
of feasible LSAPE solutions of size (|V G|+1)× (|V H |+1),
and that LSAPE solutions of size (|V G|+1)× (|V H |+1) are
equivalent to node maps between G and H. Q can hence be
viewed as a matrix representation of the quadratic program
shown in Figure 4. In this context, we define the cost function
c : [0,1](|V

G|+1)·(|V H |+1)→ R as c(X) := vec(X)TQvec(X).
Starting from an initial node map X0 ∈ Π(|V G|, |V H |)

with induced upper bound UB := c(X0), the algorithm con-
verges to a, possibly fractional, local minimum for GED by
repeating the five following steps:

1. Populate LSAPE instance Ck := Qvec(Xk).
2. Compute Bk+1 ∈ argminB∈Π(|V G|,|V H |) Ck(B).
3. Set UB := min{UB,c(Bk+1)}.
4. Compute αk+1 := minα∈[0,1] c(Xk +α · (Bk+1−Xk)).
5. Set Xk+1 := Xk +αk+1(Bk+1−Xk).

The algorithm iterates until |c(Xk)−Ck(Bk+1)|/c(Xk) is
smaller than a convergence threshold ε or a maximal number
of iterations I has been reached. Subsequently, the possibly
fractional local optimum Xk+1 is projected to the closest inte-
gral solution X̂, and the upper bound UB := min{UB,c(X̂)}
is returned.

Populating the LSAPE instance Ck in step 1
requires O(k|V G||V H |max{|V G|, |V H |}) time. Solv-
ing the LSAPE instance in step 2 requires
O(min{|V G|, |V H |}2 max{|V G|, |V H |}) time. Updating
the upper bound in step 3 requires O(max{|V G|, |V H |}2)

time. Determining the optimal step width αk+1 in step 4 can
be done analytically in O(|V G||V H |) time. And projecting

Comparing heuristics for graph edit distance computation 17

the final fractional solution Xk+1 to the integral solu-
tion X̂ requires O(min{|V G|, |V H |}2 max{|V G|, |V H |})
time. IPFP’s overall runtime complexity is hence
O(I2|V G||V H |max{|V G|, |V H |}).

Slightly different versions of IPFP that use LSAP instead
of LSAPE as a linear model have been presented in [14]
and [7]. The main advantage of these versions w.r.t. the
one presented in this survey is that they are easier to im-
plement: Unlike LSAPE, LSAP is a standard combinatorial
optimization problem and solvers are available for all major
programming languages. The drawback of the version pre-
sented in [14] is that is uses a significantly larger quadratic
matrix Q, while the drawback of the version presented in [7]
is that it can be used only for quasimetric edit cost functions.

7.3 Extensions of the paradigm LS-GED

Next, we present two extensions of the paradigm LS-GED.
Both of them can be used to improve all of the heuristics
described in Section 7.2 above.

7.3.1 The extension MULTI-START

MULTI-START was suggested in [26] as an extension to the
IPFP algorithm. While the general LS-GED framework com-
putes a local optimum, the quality of the local optimum
highly depends on the initialization of the method, which
is a general drawback of local search methods. Hence, the
MULTI-START extension to the framework simply proposes
to use K different initial solutions, run the LS-GED frame-
work on each of them (possibly in parallel), and return the
best among the K computed local optima.

In order to further reduce the computing time of
MULTI-START when parallelization is available, it was sug-
gested in [13] to run in parallel more local searches than the
number of desired local optima and to stop the whole pro-
cess when the number local searches that have converged has
reached the number of desired local optima. In this context,
the framework runs with two parameters: K is the number of
initial solutions, and 0 < ρ ≤ 1 is defined such that dρ ·Ke
is the number of desired computed local optima.

7.3.2 The extension RANDPOST

The RANDPOST framework initially proposed in [13] and re-
fined in [12] aims at extending the the MULTI-START frame-
work by running it several times in a row, and using the in-
formation contained in the computed local optima computed
so far in order to produce better initializations. In addition
to the two parameters K and ρ of MULTI-START, RANDPOST
requires two parameters: the number of iterations L ∈ N and
a penalty parameter η ∈ [0,1]. RANDPOST maintains a score

matrix M ∈ R(|V G|+1)×(|V H |+1)
≥0 for all possible node assign-

ments, which is initialized as 0(|V G|+1)×(|V H |+1). The score
for each substitution (ui,vk) ∈ V G×V H is represented by
the value mi,k in the score matrix M, while the scores for
the deletion (ui,ε) and the insertion (ε,vk) are represented
by the values mi,|V H |+1 and m|V G|+1,k, respectively. When the
penalty parameter η equals 0, mi,k always represents the num-
ber of converged local optima that contain the corresponding
assignment. When η > 0, the score of each assignment de-
pends on both the number and the cost of converged local
optima that contain it (assignments that appear in node maps
with lower costs receive higher scores).

RANDPOST starts by running one iteration of
MULTI-START. Next, RANDPOST carries out L it-
erations of its main for-loop. Inside this for-loop,
RANDPOST starts by updating the scores matrix M as
M := M + ∑π∈S Xπ [(1− η) + η

UB−LB
c(Pπ)−LB], where S is the

set of converged node maps computed by the previous
iteration of MULTI-START and, for each node map π ∈ S,
Xπ is the binary matrix that encodes π . Subsequently,
RANDPOST randomly generates new initial node maps such
that assignments with higher scores are more likely to be
part of the generated node maps: For each of the first |V G|
rows Mi of the score matrix M, RANDPOST draws a column
k ∈ [|V H |+ 1] from the distribution encoded my Mi. If
k = |V H |+1, the node deletion (ui,ε) is added to the node
map π that is being constructed. Otherwise, the substitution
(ui,vk) is added to π , the score m j,k is temporarily set to
0 for all j ∈ [|V G|] \ [i], and the column k is marked as
covered. Once all nodes of G have been processed, node
insertions (ε,vk) are added to π for all uncovered columns
k ∈ [|V H |]. This process is repeated until K different node
maps have been created. Once all new initial node maps have
been generated, RANDPOST carries out another iteration of
MULTI-START and updates the upper bound if one of the
newly computed node maps yields an improvement.

8 Miscellaneous heuristics

In this section, we describe six algorithms that do not instan-
tiate any of the paradigms LSAPE-GED, LS-GED, and LP-GED
discussed in Sections 5 to 6. The first three algorithms pre-
sented in Sections 8.1 to 8.3 accept arbitrary edit cost func-
tions, whereas the remaining three algorithms presented in
Sections 8.4 to 8.6 are designed for uniform edit costs.

8.1 The algorithm HED

Given two input graphs G and H, the algorithm HED

[28] starts by constructing the same LSAPE instance C ∈
R(|V G|+1)×(|V H |+1) as the algorithm BRANCH presented in Sec-
tion 5.2.3 above. However, instead of feeding C into an

18 David B. Blumenthal et al.

LSAPE solver for obtaining upper and lower bounds for
GED, HED computes a lower bound

LB := 0.5 ·
|V G|
∑
i=1

min
k∈[|V H |+1]

ci,k +0.5 ·
|V H |
∑
k=1

min
i∈[|V G|+1]

ci,k

for GED by summing the minima of C’s rows and columns.
Note that, in general, LB does not correspond to a feasible
LSAPE solution, because of which HED does not compute
an upper bound for GED. Furthermore, it holds that LB ≤
LSAPE(C), which implies that HED’s lower bound is never
tighter than the lower bound computed by BRANCH.

As detailed in Section 5.2.3, the LSAPE instance
C can be constructed in O(|V G||V H |∆ G,H

min
2
∆

G,H
max) time,

where ∆
G,H
min := min{maxdeg(G),maxdeg(H)} and ∆

G,H
max :=

max{maxdeg(G),maxdeg(H)}. This implies that the over-

all runtime complexity of HED is O(|V G||V H |∆ G,H
min

2
∆

G,H
max).

8.2 The algorithm BRANCH-TIGHT

Given two input graphs G and H, the algorithm
BRANCH-TIGHT [9] starts by enforcing |V G| = |V H | =: N.
If the edit cost functions cV and cE are metric, this is done by
adding max{|V G|, |V H |}− |V G| isolated dummy nodes to G
and adding max{|V G|, |V H |}− |V H | isolated dummy nodes
to H. Otherwise, |V H | isolated dummy nodes are added to
G and |V G| isolated dummy nodes are added to H. Next,
dummy edges are added to G and H to render G and H
d-regular with d = O(∆ G,H

max). Both of these preprocessing
operations leave GED(G,H) invariant.

After preprocessing the input graphs, BRANCH-TIGHT
runs an anytime algorithm that, given a maximal number
of iterations I, computes lower bounds (LBs)

I
r=1 and upper

bounds (UBs)
I
r=1 for GED such that LB1 equals the lower

bound computed by the algorithm BRANCH presented in Sec-
tion 5.2.3 above and LBr+1 ≥ LBs holds for all r ∈ [I− 1].
Once I or a given time limit has been reached or the lower
bound has converged, BRANCH-TIGHT returns the last lower
bound LB := LBI′ and the best encountered upper bound.

BRANCH-TIGHT repeatedly solves instances of the linear
sum assignment or minimum cost perfect bipartite matching
problem (LSAP). LSAP is similar to LSAPE but does not
allow deletions and insertions of rows and columns.

Definition 8 (LSAP) Given a square matrix C ∈ Rn×n, the
linear sum assignment problem (LSAP) asks to minimize
C(X) := ∑n

i=1 ∑m
k=1 ci,kxi,k over all permutation matrices X ∈

Π̂(C), where Π̂(n,m) := {X∈ {0,1}n×n | 1TX = 1T∧X1 =

1} and 1 is the n-sized vector of ones. LSAP(C) := C(X)

denotes the cost of an optimal solution X.

For each (ui,vk) ∈ V G ×V H and each iteration r ∈
[I], BRANCH-TIGHT constructs and solves LSAP instances

Ci,k,r ∈ Rd×d defined as

ci,k,r
j,l :=





0.5 · cE((ui,u j),(vk,vl)) if r = 1

ci,k,r−1
j,l − si,k,r−1

j,l − sr−1
i,k
d + s j,l,r−1

i,k +
sr−1

j,l
d else

for all (u j,vl) ∈ NG(ui)×NH(vk). Here, sr,i,k
j,l is the slack of

the variable x j,l in an optimal LSAP solution of the LSAP
instance Ci,k,r, and sr

i,k is the slack of the variable xi,k in an
optimal solution of the LSAP instance Cr ∈RN×N , which, in
turn, is constructed by setting

cr
i,k := cV (ui,vk)+LSAP(Ci,k,r)

for all (ui,vk) ∈V G×V H . After constructing Cr, an optimal
solution Xr for Cr is computed, LBr is set to LSAP(Cr),
and UBr is set to the cost of the edit path induced by Xr.
Subsequently, r is incremented and the process iterates.

Preprocessing the input graphs G and H requires

O(N3∆
G,H
max

2
) and one iteration of the anytime algorithm runs

in O(N2∆
G,H
max

3
+ N3). This implies that BRANCH-TIGHT’s

overall runtime complexity is O(N3∆
G,H
max

2
+ I(N2∆

G,H
max

3
+

N3)). Recall that we have N = max{|V G|, |V H |}, if the edit
cost functions are metric, and N = |V G|+ |V H |, otherwise.

8.3 The algorithm SA

The algorithm SA [58] uses simulated annealing to im-
prove the upper bound computed by an instantiation of the
paradigm LSAPE-GED discussed in Section 5 above.3 SA is
hence similar to the local search based heuristics presented
in Section 7. However, instead of varying an initial node
map, SA varies the processing order for greedily computing a
cheap solution for an initially computed LSAPE instance.

Assume w. l. o. g. that G and H are two input graphs
with |V G| ≥ |V H |. SA starts by running an instantiation of
LSAPE-GED to obtain an initial node map π ∈ Π(G,H), an
LSAPE instance C ∈ R(|V G|+1)×(|V H |+1), and, possibly, a
lower bound LB. If the employed LSAPE-GED instantiation
does not yield a lower bound, LB can be computed with any
other method that produces a lower bound.

Given a maximal number of iterations I and start and
end probabilities p1 and pI with 1 > p1 ≥ pI > 0 for ac-
cepting an unimproved node map, SA initializes an order-
ing σ : [|V G|]→ [|V G|] of the first |V G| rows of C by set-
ting σ(i) := i for all i ∈ [|V G|], computes a cooling factor
a := (log(p1)/ log(pI))

1/(I−1) such that pa−(I−1)

1 = pI , sets
the current acceptance probability to p := p1, initializes the
best encountered node map π ′ and the current node map

3 In [58], SA is presented as a technique for improving the upper
bound computed by the LSAPE-GED instantiation BP. Since SA can be
used with any instantiation of LSAPE-GED, we here present a more
general version.

Comparing heuristics for graph edit distance computation 19

π ′′ as π ′ := π ′′ := π , and sets the number r of consecutive
iterations without improvement of the upper bound to r := 0.

While the maximal number of iterations I has not been
reached and the best upper bound c(Pπ ′) is greater than LB,
SA does the following: First, a candidate row ordering σ ′ is
obtained from the current ordering σ by setting σ ′(1) :=σ(i),
σ ′(j) := σ(j−1) for all j ∈ [i]\{1}, and σ ′(j) := σ(j) for
all j ∈ [|V G|] \ [i], where i ∈ [|V G|] is a randomly selected
row of C. Next, a candidate node map π ′′′ is computed by
greedily assigning the σ ′-ordered rows of C to the cheapest
unassigned columns. If π ′′′’s induced upper bound is cheaper
than the upper bound of the current node map π ′′, π ′′ and σ

are updated to π ′′′ and σ ′, respectively. Otherwise, they are
updated with a probability that is proportional to the current
acceptance probability p and inversely proportional to the
deterioration c(Pπ ′′′)− c(Pπ ′′) of the induced upper bound.

After updating π ′′ and σ , SA checks if π ′′’s induced upper
bound is tighter than the upper bound induced by the best
encountered node map π ′. If this is the case, π ′ is updated
to π ′′ and the number r of consecutive iterations without
improvement is reset to 0. Otherwise, r is incremented and
the current ordering σ is reshuffled randomly with probability
r/I. Finally, the current acceptance probability p is set to
pa−s

1 , where s is the number of the current iteration, and SA

iterates. After exiting the main loop, SA returns UB := c(Pπ ′).
The dominant operations in one iteration of SA are

the greedy computation of the candidate node map π ′′′

and the computation of its induced upper bound. One it-
eration of SA hence runs in O(|V G||V H |+max{EG,EH})
time. This implies that SA’s overall runtime complexity is
O(ω + I(|V G||V H |+ max{EG,EH})), where O(ω) is the
runtime required for computing the initial upper and lower
bounds as well as the LSAPE instance C.

8.4 The algorithm BRANCH-COMPACT

The algorithm BRANCH-COMPACT [71] yields a lower bound
for GED with uniform edit cost functions cV and cE . Recall
that cV and cE are uniform if there is a constant c ∈ R>0
such that cV (α,α ′) = cE(β ,β

′) = c holds for all node labels
(α,α ′) ∈ (ΣV ∪{ε})× (ΣV ∪{ε}) with α 6= α ′ and all edge
labels (β ,β ′) ∈ (ΣE ∪{ε})× (ΣE ∪{ε}) with β 6= β ′.

Given input graphs G and H, BRANCH-COMPACT starts
by constructing branches BG

i := (`G
V (ui), `

G
E JEG(ui)K) and

BH
k := (`H

V (vk), `
H
E JEH(vk)K) for all ui ∈ V G and all vk ∈

V H . Subsequently, BRANCH-COMPACT sorts the branches in
non-decreasing lexicographical order, i. e., computes order-
ings σG : [|V G|] → [|V G|] and σH : [|V H |] → [|V H |] such
that BG

σG(i) �L BG
σG(i+1) holds for all i ∈ [|V G| − 1] and

BH
σH (k) �L BH

σH (k+1) holds for all k ∈ [|V H |−1].
BRANCH-COMPACT now performs a first parallel linear

scan over the sorted sequences of branches (BG
σG(i))

|V G|
i=1

and (BH
σH (k))

|V H |
k=1 to delete a maximal number of pairs of

branches (BG
σG(i),B

H
σH (k)) with BG

σG(i) = BH
σH (k). Subse-

quently, BRANCH-COMPACT initializes its lower bound as
LB := 0 and performs a second parallel linear scan over
the remaining branches. In this scan, a maximal number
of pairs of branches (BG

σG(i),B
H
σH (k)) with `G

V (uσG(i)) =

`H
V (vσH (k)) is deleted and LB is incremented by c/2 for

each deleted pair of branches. Finally, LB is incremented
by c(max{|V G|, |V H |}−D), where D is the number of pairs
of branches that have been deleted during the two scans.

BRANCH-COMPACT first sorts the branches in
O(max{|V G|, |V H |}∆ G,H

max log(∆ G,H
max)) time, and then

computes its lower bound in O(max{|V G|, |V H |})
time. BRANCH-COMPACT’s overall runtime complex-
ity is hence O(max{|V G|, |V H |}(∆ G,H

max log(∆ G,H
max) +

log(max{|V G|, |V H |}))).

8.5 The algorithm PARTITION

The algorithm PARTITION [71] computes a lower bound for
GED with uniform edit costs. Given input graphs G and H
and a constant K ∈ R≥1, PARTITION starts by initializing a
collection S := /0 of K′-sized substructures of G that are not
subgraph-isomorphic to H, where K′ ∈ [K] and a K′-sized
substructure of G is a connected subgraph of G that is com-
posed of K′ elements (nodes or edges). For instance, 1-sized
substructures are single nodes or edges, 2-sized substruc-
tures are nodes together with an incident edge, and 3-sized
substructures are nodes together with two incident edges or
edges together with their terminal nodes.

Starting with K′ := 1, PARTITION now consecutively
checks for each K′-sized substructure SG ⊆ G of G if there
is a K′-sized substructure of H which is isomorphic to SG.
If this is not the case SG is added to S and deleted from G.
Once all K′-sized substructure have been considered, K′ is
incremented and the process iterates if K′ ≤ K. Otherwise,
PARTITION returns the lower bound LB := c|S |.

Since G and H have, respectively, O(|EG|) and O(|EH |)
substructures of sizes 1, 2, and 3, PARTITION with K ≤ 3
runs in O(|EG||EH |) time. Determining non-isomorphic sub-
structures of size K > 3 cannot be done naively but requires
to call subgraph isomorphism verification algorithms such
as the one proposed in [24]. These algorithms run in super-
polynomial time but are often fast in practice for small K.

8.6 The algorithm HYBRID

The algorithm HYBRID [71] improves the lower bounds of
the algorithms BRANCH-CONST and PARTITION presented in
Section 5.2.5 and Section 8.5. Given input graphs G and H
and a constant K ∈ R≥1, HYBRID first runs PARTITION with

20 David B. Blumenthal et al.

the maximal size of the considered substructures set to K,
and hence obtains a collection S of substructures SG ⊆G of
G that are not subgraph-isomorphic to H.

Let C (S) :=×SG∈S SG be the set of all configurations
of nodes or edges that appear in the non-isomorphic substruc-
tures. For each configuration a := (as)

|S |
s=1 ∈ C (S), HYBRID

creates a modified graph Ga, where all nodes or edges as
contained in the configuration a get a special wildcard label
γ , and runs a variant of BRANCH-CONST on the graphs Ga and
H, which edits γ-labeled nodes and edges for free. Finally,
HYBRID returns the lower bound LB := |S |+min{LBa | a ∈
C (S)}, where LBa is the lower bound returned by the wild-
card version of BRANCH-CONST if run on the graphs Ga and
H. This lower bound is guaranteed to be as least as tight as the
lower bounds computed by PARTITION and BRANCH-CONST.

Let O(ω1) be the runtime complexity of PARTITION with
the maximal size of the considered substructures set to K
and O(ω2) be the runtime complexity of BRANCH-CONST.
Then HYBRID runs in O(ω1 +ω2|C (S)|) time. Note that
|C (S)| can get huge. For instance, assume that PARTITION
completely partitions G into substructures of size 2. Then it
holds that |C (S)|= ∏SG∈S |SG|= 2|V

G|. HYBRID’s runtime
complexity is hence not polynomially bounded.

9 Experimental evaluation

We carried out extensive experiments to empirically eval-
uate the presented heuristics and to address the two meta-
questions Q1 and Q2 introduced in Section 1. We first de-
scribe the setup of our experiments (Sections 9.1 to 9.4) and
then report their results (Sections 9.5 to 9.9).

9.1 Datasets and edit cost functions

We tested on the widely used benchmark datasets AIDS,
MUTA, PROTEIN, LETTER (H), GREC, and FP from the IAM
Graph Database Repository [50, 52], and used the edit cost
functions suggested in [2, 52]. Table 5 summarizes important
statistics of the datasets. For details on the edit cost function,
cf. Appendix A. In order to be able to compare all heuristics
on all datasets, we used the technique described in Section 4
to extend heuristics with cost constraints to general edit costs.

9.2 Choice of options and parameters

For all instantiations of the paradigms LSAPE-GED, LS-GED,
and LP-GED and for all miscellaneous heuristics, we followed
the original publications to determine their meta-parameters.
In the remainder of this section, we give detailed descrip-
tions for each heuristic and describe how we tested the ex-
tensions MULTI-SOL and CENTRALITIES of the paradigm

LSAPE-GED, as well as the extensions MULTI-START and
RANDPOST of the paradigm LS-GED.

– Meta-parameters for SUBGRAPH and WALKS: As sug-
gested in [21] and [32], for each dataset, we determined
the parameters K of SUBGRAPH and WALKS as the K ∈ [5]
that yielded the tightest average upper bounds on a set
of training graphs. To cope with SUBGRAPH’s exponential
runtime complexity, we set a time limit of 1 ms for the
computation of each cell of its LSAPE instance C.

– Options and meta-parameters for RING: As highlighted
in [4, 6], RING performs best if the node and edge set
distances are computed via optimal LSAPE solvers or
multiset intersection based proxies. We included both
options in our experiments; the resulting heuristics are
denoted as RINGOPT and RINGMS, respectively. For both
variants and each dataset, the meta-parameters λl , αs, and
K were determined by running a blackbox optimizer on
a set of training graphs, as suggested in [4, 6].

– Options for RING-ML and PREDICT: As highlighted
in [4], the machine learning based heuristics RING-ML
and PREDICT perform best if one-class support vector
machines with RBF kernel or fully connected feedfor-
ward deep neural networks are used for training. We
included both variants in our experiments; the result-
ing heuristics are denoted as RING-ML1-SVM, RING-MLDNN,
PREDICT1-SVM, and PREDICTDNN, respectively.

– Meta-parameters for K-REFINE: We ran K-REFINE with
swap size K := 3. We hence followed the suggestion
in [12], where it is highlighted that K > 3 leads to an enor-
mous blowup of K-REFINE’s runtime on larger graphs.

– Meta-parameters for BP-BEAM and IBP-BEAM: As sug-
gested in [56] and [27], we set the beam size employed
by BP-BEAM and IBP-BEAM to K := 5 and the number of
iterations employed by IBP-BEAM to I := 20.

– Options and meta-parameters for IPFP: As highlighted
in [7], the best performing variant of IPFP that can cope
with general edit costs is the one suggested in [16]. In
our experiments, we therefore only included this variant.
Like in the experiments of the original publications, we
set the maximal number of iterations to I := 100 and the
convergence threshold to ε := 10−3.

– Meta-parameters for BRANCH-TIGHT: As suggested in
[9], we set the number of iterations carried out by
BRANCH-TIGHT to I := 20.

– Meta-parameters for SA: As suggested in [58], we set
SA’s number of iterations to I := 100 and used start and
end probabilities p1 := 0.8 and pI := 10−2. We used
BRANCH for computing SA’s initial LSAPE instance C.

– Meta-parameters for PARTITION and HYBRID: In [71], it
is suggested to set the maximal size of the substructures
employed by PARTITION and HYBRID to K := 8. How-
ever, how to implement these heuristics with K > 3 is not
well documented in [71] and the authors did not reply to

Comparing heuristics for graph edit distance computation 21

Table 5 Overview of test datasets.

dataset # graphs # classes # nodes # edges labels

min max mean std median min max mean std median nodes edges

AIDS 1500 2 2 95 15.7 13.8 11 1 103 16.2 15.1 11 yes yes
MUTA 4337 2 4 417 30.3 20.1 27 3 112 30.8 16.8 28 yes yes
PROTEIN 600 6 2 126 32.6 15.3 32 1 149 62.1 25.5 60 yes yes
LETTER (H) 2250 15 1 9 4.7 1.3 5 0 9 4.5 1.6 5 yes no
GREC 1100 22 4 24 11.5 4.9 11 2 29 11.9 6.0 10 yes yes
FP 2800 4 0 26 5.4 5.0 4 0 24 4.4 4.5 3 no yes

our request to share their implementation. We therefore
used K := 3 for our experiments. To cope with HYBRID’s
exponential runtime complexity, we set a time limit of 1 s
and set up HYBRID to return the maximum of the lower
bounds computed by PARTITION and BRANCH-CONST if
it did not terminate within the time limit.

– Configurations for the extensions MULTI-SOL and
CENTRALITIES of the paradigm LSAPE-GED: In order to
test MULTI-SOL and CENTRALITIES, we ran all instanti-
ations of LSAPE-GED with all configurations (K,γ) ∈
{1,3,7,10} × {0,0.7}, where K is the maximal num-
ber of solutions computed by MULTI-SOL and γ is the
weight of the centralities used by CENTRALITIES. We
used pagerank centralities with γ = 0.7, because in [53]
this setup is reported to yield the best results among all
variants of CENTRALITIES. MULTI-SOL is used just in
case K 6= 1 and CENTRALITIES is used just in case γ 6= 0.

– Configurations for the extensions MULTI-START and
RANDPOST of the paradigm LS-GED: For testing
MULTI-START and RANDPOST, we ran each LS-GED

instantiation with all (K,ρ,L,η) ∈ ({(40,1/2,1),
(40,1/4,3),(40,1/8,7)}× {0,1})∪ ({1,10,20,30,40}×
{(1,0,0)}). K is the number of initial node maps
constructed by MULTI-START, dρ ·Ke is the number of
completed runs from initial node maps, L is the number
of RANDPOST loops, and η is the penalty for expensive
converged node maps employed by RANDPOST. The
initial node maps were constructed randomly under the
constraint that they contain exactly min{|V G|, |V H |}
node substitutions. Note that each configuration that uses
RANDPOST (i. e., has L > 0) in total carries out exactly 40
runs from different initial node maps.

9.3 Test protocol and test metrics

For each test dataset D , we randomly selected a training
set Dtrain ⊆ D and a testing set Dtest ⊆ D \Dtrain. We en-
sured that both sets are balanced w. r. t. the classes of the
contained graphs and set their sizes to the largest integers
not greater than, respectively, 50 (for training) and 100 (for
testing) that allowed balancing. All algorithms that require

training were trained on Dtrain. Subsequently, we ran all com-
pared algorithms on all pairs of graphs (G,H) ∈Dtest×Dtest.
Recall that we compared various configurations of the exten-
sions MULTI-SOL and CENTRALITIES for the instantiation
of LSAPE-GED; and that we tested various configurations of
the extensions MULTI-START and RANDPOST for the instanti-
ation of LS-GED. In the following, the expression “algorithm”
denotes a heuristic together with its configuration.

Algorithms for GED computation are typically evaluated
w. r. t. their runtime behaviour, the tightness of the produced
bounds, and the performance of pattern recognition frame-
works that use the produced bounds as underlying distance
measures (cf. the criteria C1 to C3). For all compared al-
gorithms ALG, we therefore recorded the average runtime
t(ALG). Moreover, we recorded the average lower bound
dLB(ALG) and the classification coefficient cLB(ALG) for all
algorithms that yield lower bounds, and the average upper
bound dUB(ALG) and the classification coefficient cUB(ALG)

for all algorithms that yield upper bounds.
The coefficients cLB and cUB were computed as

cLB(ALG) := (dinter
LB (ALG)−dintra

LB (ALG))/max LB(ALG)

cUB(ALG) := (dinter
UB (ALG)−dintra

UB (ALG))/max UB(ALG),

where dinter
LB (ALG) and dinter

UB (ALG) are the average lower
and upper bounds between graphs with different classes,
dintra

LB (ALG) and dintra
UB (ALG) are the average lower and up-

per bounds between graphs with the same class, and
max LB(ALG) and max UB(ALG) denote the maximal lower
and upper bounds computed by ALG. The reason for defin-
ing the classification coefficients in this way is that pattern
recognition frameworks based on distance measures perform
well just in case the intra-class distances are significantly
smaller than the inter-class distances. Hence, large classi-
fication coefficients cLB(ALG) and cUB(ALG) imply that the
respective lower or upper bounds are fit for use within dis-
tance based pattern recognition frameworks. We normalized
by the maximal lower and upper bounds in order to ensure
cLB(ALG),cUB(ALG) ∈ [−1,1] and hence render the classifi-
cation coefficients comparable across different datasets. We
rounded t(ALG) to microseconds and dLB|UB(ALG) as well as
cLB|UB(ALG) to two decimal places.

22 David B. Blumenthal et al.

After running all algorithms, we computed a joint score
sLB(ALG) ∈ [0,1] for all algorithms that yield lower bounds
and a joint score sUB(ALG) ∈ [0,1] for all algorithms that
yield upper bounds. The joint scores are defined as

sLB(ALG) :=
dLB(ALG)

3 ·d?
LB

+
t?LB

3 · t(ALG) +
cLB(ALG)

3 · c?LB

sUB(ALG) :=
d?

UB
3 ·dUB(ALG)

+
t?UB

3 · t(ALG) +
cUB(ALG)

3 · c?UB
,

where d?
LB, t?LB, and c?LB denote the best (i. e., largest) average

lower bound, the best average runtime, and the best classi-
fication coefficient yielded by any algorithm that computes
a lower bound. Analogously, d?

UB, t?UB, and c?UB denote the
best (i. e., smallest) average upper bound, the best average
runtime, and the best classification coefficient yielded by any
algorithm that computes an upper bound. With this definition,
each evaluation criterion contributes a quantity between 0
and 1/3 to the joint score, and an algorithm has joint score 1
if it performs best w. r. t. all three criteria.

We partially ordered the compared algorithms w. r. t. the
Pareto dominance relations�LB and�UB. For two algorithms
ALG1 and ALG2 that compute lower bounds, we say that the
lower bound computed by ALG1 dominates the one produced
by ALG2 on a given dataset (in symbols: ALG1 �LB ALG2)
just in case ALG1 performs at least as good as ALG2 w. r. t.
to all three evaluation criteria dLB, t, and cLB, and strictly
better than ALG2 w. r. t. at least one of them. The domi-
nance relation �UB for the upper bounds is defined anal-
ogously. Note that, with these definitions, ALG1 �LB ALG2
implies sLB(ALG1)> sLB(ALG2) and ALG1 �UB ALG2 implies
sUB(ALG1)> sUB(ALG2), but the inverse implications do not
hold. The joint scores sLB and sUB hence allow to compare
algorithms that are Pareto optimal.

Using the partial orders �LB and �UB, we computed
aggregated joint lower bound scores ŝLB(H) for all heuristics
H that compute lower bounds, as well as aggregated joint
upper bounds score ŝUB(H) and ŝUB(E) for all heuristics H that
compute lower bounds and all extensions E of the paradigms
LSAPE-GED and LS-GED. These scores were computed as

ŝLB(H) := δC (H)∩MAX�LB 6= /0 max
ALG∈C (H)∩MAX�LB

sLB(ALG)

ŝUB(H) := δC (H)∩MAX�UB 6= /0 max
ALG∈C (H)∩MAX�UB

sUB(ALG)

ŝUB(E) :=
δC (P(E))∩MAX�UB 6= /0 ∑ALG∈C (E)∩MAX�UB

sUB(ALG)

∑ALG∈C (P(E))∩MAX�UB
sUB(ALG)

,

where C (H) is the set of compared algorithms that are con-
figurations of the heuristic H, C (E) is the set of compared
algorithms that use the extension E, C (P(E)) is the set of com-
pared algorithms that instantiate the paradigm extended by E,
and MAX�LB and MAX�UB are the set of maxima w. r. t. the
partial orders �LB and �UB, respectively. In other words, we

set the aggregated joint scores ŝLB(H) and ŝUB(H) of a heuris-
tic H to the maximal scores of Pareto optimal configurations
of H, and to 0 if no configurations of H were Pareto optimal.
The aggregated joint upper bound score ŝUB(E) of an exten-
sion E of the paradigms LSAPE-GED and LS-GED was set to
the sum of the joint upper bound scores of Pareto optimal
algorithms that use E divided by the sum of the joint upper
bound scores of Pareto optimal algorithms that instantiate the
paradigm extended by E, and to 0 if no algorithms that instan-
tiate the paradigm extended by E were Pareto optimal. We
also computed vectors χLB(H) ∈ {0,1}3 for all heuristics that
yield lower bounds and vectors χUB(H),χUB(E) ∈ {0,1}3 for
all heuristics that yield upper bounds and all extensions of the
paradigms LSAPE-GED and LS-GED. These vectors indicate
whether a heuristic or an extension has a configuration that
performed best w. r. t. one or several of the observed met-
rics f1LB|UB

:= dLB|UB, f2LB|UB
:= tLB|UB, and f3LB|UB

:= cLB|UB.
That is, the indicator vectors were computed as follows:

χLB(H) := (δ∃ALG∈C (H): frLB (ALG)= f ?rLB
)3

r=1

χUB(H) := (δ∃ALG∈C (H): frUB (ALG)= f ?rUB
)3

r=1

χUB(E) := (δ∃ALG∈C (E): frUB (ALG)= f ?rUB
)3

r=1

Finally, we trained linear regression models cLB ∼ dLB :=
(aLB,mLB) and cUB ∼ dUB := (aUB,mUB) defined as

(aLB,mLB) := argmin
(a,m)∈R×R

∑
ALG

[cLB(ALG)− (a+m ·dLB(ALG))]
2

(aUB,mUB) := argmin
(a,m)∈R×R

∑
ALG

[cUB(ALG)− (a+m ·dUB(ALG))]
2

for each dataset, which relate the tightnesses of the computed
upper and lower bounds to the obtained classification coef-
ficients: Tightness of lower bounds is positively correlated
to high classification coefficients if the slope mLB is positive;
tightness of upper bounds is positively correlated to high clas-
sification coefficients if the slope mUB is negative. We also
computed the p-values pLB and pUB of the regression mod-
els, to assess whether the correlations between bounds and
classification coefficients are statistically significant. Table 6
gives an overview of all test metrics.

9.4 Implementation and hardware specifications

To ensure comparability, we reimplemented all compared
heuristics in C++. Our implementation builds upon the
Boost Graph Library [41] and Eigen [33] for efficiently
managing graphs and matrices. For solving LSAPE, we
used the solver suggested in [17], which is efficiently im-
plemented in the LSAPE toolbox available at https://
bougleux.users.greyc.fr/lsape/. We used the black-
box optimizer NOMAD [39] for training RINGOPT and

https://bougleux.users.greyc.fr/lsape/
https://bougleux.users.greyc.fr/lsape/

Comparing heuristics for graph edit distance computation 23

Table 6 Overview of test metrics.

syntax semantic

observed metrics for compared algorithms
dLB|UB average lower and upper bounds
t average runtime
cLB|UB classification coefficients of lower and upper bounds

inferred metrics for compared algorithms
sLB|UB joint lower and upper bound scores

inferred metrics for compared heuristics and extensions
ŝLB|UB aggregated joint lower and upper bound scores
χLB|UB indicate whether heuristics and extensions have configuration

that are optimal w. r. t. observed metrics

inferred metrics for test datasets
d?

LB|UB tightest average lower and upper bounds
t?LB|UB average runtimes of fastest algorithms producing lower and

upper bounds
c?LB|UB best classification coefficients of lower and upper bounds
mLB|UB slopes of linear regression models cLB|UB ∼ dLB|UB

pLB|UB p-values of linear regression models cLB|UB ∼ dLB|UB

RINGMS, the support vector machine library LIBSVM [22]
for training RING-ML1-SVM and PREDICT1-SVM, the artificial
neural network library FANN [47] for training RING-MLDNN

and PREDICTDNN, and the mathematical programming library
Gurobi [34] for implementing the instantiations of LP-GED.

All heuristics were run in six threads: Instantiations of
LSAPE-GED were set up to parallelly construct their LSAPE
instance C, instantiations of LS-GED were implemented to
parallelly carry out runs from several initial solutions, and
instantiations of LP-GED were allowed to use multithreading
when solving their LP via calls to Gurobi. For the miscella-
neous heuristics, we used the following parallelization tech-
niques: HED was set up to construct its LSAPE instance C
in parallel, BRANCH-TIGHT was implemented to parallelize
the construction phases of all of its LSAP instances Cr, and
SA and HYBRID were set up to use the parallelized versions
of, respectively, BRANCH and BRANCH-CONST as subroutines.
BRANCH-COMPACT and PARTITION do not allow straightfor-
ward parallelizations and where hence run in only one thread.

Source code and datasets are distributed with GEDLIB:
https://github.com/dbblumenthal/gedlib/ [5].
Tests were run on a machine with two Intel Xeon E5-2667
v3 processors with 8 cores each and 98 GB of main memory
running GNU/Linux.

9.5 Lower bounds

Figure 9 shows the average lower bounds and runtimes of
all heuristics that compute lower bounds. Globally, we see
that instantiations of LP-GED (except COMPACT-MIP) yielded
tight lower bound, but were also relatively slow. Instantiations

0 2 4

10−4

10−3

10−2

dLB

ti
n

s

LETTER (H)

0 1 2 3

10−5

10−4

10−3

10−2

dLB

ti
n

s

FP

0 20 40 60 80
10−5

10−3

10−1

dLB

ti
n

s

AIDS

0 50 100
10−5

10−2

101

dLB

ti
n

s

MUTA

0 200 400 600 800

10−4

10−3

10−2

dLB

ti
n

s

GREC

0 100 200 300

10−4

10−2

100

dLB

ti
n

s

PROTEIN

NODE BRANCH BRANCH-FAST BRANCH-CONST

F1 F2 COMPACT-MIP ADJ-IP

HED BRANCH-TIGHT BRANCH-COMPACT PARTITION

HYBRID

Fig. 9 Average lower bounds vs. average runtime. Instantiations of
LSAPE-GED and LP-GED are displayed as circles and squares, respec-
tively; miscellaneous methods are displayed as triangles.

of LSAPE-GED were faster and only slightly less accurate.
Among the miscellaneous heuristics, only BRANCH-TIGHT

and HYBRID produced competitive lower bounds.

Table 7 shows the aggregated joint lower bound
scores ŝLB(H), as well as the indicator vectors χLB(H).
The fast but relatively imprecise LSAPE-GED instantia-
tions BRANCH-CONST and NODE were Pareto optimal on six
(BRANCH-CONST) respectively five (NODE) out of six datasets.
Among the more precise heuristics, BRANCH-TIGHT and the
LP-GED instantiations ADJ-IP and F2 performed best. They
were Pareto optimal on four (ADJ-IP) respectively three (F2
and BRANCH-TIGHT) out of six datasets.

In Figure 10, the results are further aggregated by aver-
aging the scores and summing the indicator vectors over all
datasets. Instantiations of LSAPE-GED are displayed white,
instantiations of LP-GED are displayed light grey, and mis-

https://github.com/dbblumenthal/gedlib/

24 David B. Blumenthal et al.

Table 7 Overview of results for lower bounds. For each heuristic H and each dataset, a non-zero aggregated joint lower bound score (displayed bold)
implies that H was Pareto optimal on the dataset.

heuristic LETTER (H) MUTA AIDS PROTEIN FP GREC

χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB χLB ŝLB

instantiations of the paradigm LSAPE-GED

NODE (0,0,0) 0.00 (0,1,0) 0.59 (0,1,1) 0.92 (0,1,1) 0.97 (0,1,1) 0.93 (0,1,0) 0.94
BRANCH (0,0,0) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.68 (0,0,0) 0.68 (0,0,1) 0.73
BRANCH-FAST (0,0,0) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.71 (0,0,1) 0.74 (0,0,1) 0.79
BRANCH-CONST (0,1,0) 0.92 (0,0,0) 0.41 (0,0,1) 0.76 (0,0,1) 0.74 (0,0,1) 0.75 (0,0,1) 0.86
STAR (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00

instantiations of the paradigm LP-GED

F1 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
F2 (0,0,0) 0.00 (0,0,0) 0.32 (0,0,1) 0.66 (1,0,1) 0.67 (0,0,0) 0.00 (0,0,0) 0.65
COMPACT-MIP (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
ADJ-IP (1,0,1) 0.67 (1,0,1) 0.67 (1,0,1) 0.67 (0,0,1) 0.00 (0,0,1) 0.00 (1,0,0) 0.66

miscellaneous heuristics
HED (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
BRANCH-TIGHT (0,0,1) 0.68 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (1,0,0) 0.64 (0,0,1) 0.66
BRANCH-COMPACT (0,0,0) 0.00 (0,0,1) 0.63 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
PARTITION (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
HYBRID (0,0,0) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00

cellaneous heuristics are displayed black. We observe that,
globally, BRANCH-CONST and NODE achieved the best aggre-
gated joint lower bound scores, i. e., exhibited the best trade-
offs between tightness of the obtained lower bound, run-
time, and classification coefficient (cf. Figure 10a). NODE
and BRANCH-CONST also performed best in terms of run-
time (cf. Figure 10c). In terms of tightness of the obtained
lower bound, the LP based heuristics ADJ-IP performed
best, followed by BRANCH-TIGHT and F2 (cf. Figure 10b).
BRANCH-TIGHT and ADJ-IP also were the best performing
heuristics w. r. t. the classification coefficient (cf. Figure 10d).

The Figures 17 to 22 in Appendix B show the dominance
graphs induced by the relation�LB for each dataset and hence
visualize the results in more detail.

9.6 Upper bounds

Figure 11 shows the average upper bounds and runtimes of
all heuristics that compute upper bounds. Instantiations of
LS-GED usually provided the tightest upper bounds at the
price of large execution times. Instantiations of LP-GED (ex-
cept COMPACT-MIP) also yielded low upper bounds but were
even slower. Finally, the paradigm LSAPE-GED represents the
category with the largest variations. Its instantiations usually
required low execution times (except RING, SUBGRAPH, and
WALKS), but the provided upper bounds greatly depend on the
intrinsic difficulty of the datasets.

Table 8 shows the aggregated joint upper bound scores
ŝUB(H) and ŝUB(E), as well as the indicator vectors χUB(H)

and χUB(E). The LS-GED instantiation IPFP was Pareto opti-
mal on all datasets, as it always computed the tightest upper
bound. The instantiation NODE of LSAPE-GED was Pareto op-
timal and the fastest heuristic on five out of six datasets and
also achieved very high aggregated joint upper bound scores
on these datasets. The instantiation REFINE of LS-GED per-
formed well, too, as it was Pareto optimal on all datasets
except for GREC. On the negative side, we see that the in-
stantiations of LP-GED and the miscellaneous heuristics per-
formed very poorly, as they were almost always dominated
by other heuristics.

In Figure 12, the results are further aggregated by av-
eraging the scores and summing the indicator vectors over
all datasets. Instantiations and extensions of LSAPE-GED are
displayed white, instantiations of LP-GED are displayed light
grey, instantiations and extensions of LS-GED are displayed
dark grey, and miscellaneous heuristics are displayed black.
We observe that, globally, NODE, IPFP, and REFINE achieved
the best aggregated joint upper bound scores, i. e., exhibited
the best tradeoffs between tightness of the obtained upper
bound, runtime, and classification coefficient (cf. Figure 12a).
In terms of runtime, NODE and BRANCH-CONST performed
best (cf. Figure 12c). In terms of classification coefficient
and tightness, the instantiations of LS-GED performed best,
with IPFP as the best performing heuristic among them (cf.
Figure 12b and Figure 12d).

The average aggregated joint upper bound scores of both
extensions CENTRALITIES and MULTI-SOL of the paradigm
LSAPE-GED turned out to be smaller than 0.5 (cf. Figure 12a).
That is, on average, instantiations of LSAPE-GED did not

Comparing heuristics for graph edit distance computation 25

Table 8 Overview of results for upper bounds. For each heuristic H and each dataset, a non-zero aggregated joint upper bound score (displayed
bold) implies that there was a Pareto optimal configuration of H. For each extension E and each dataset, a non-zero aggregated joint upper bound
score (displayed bold) means that at least one algorithm using E was Pareto optimal. An aggregated joint upper bound score greater than 0.5 means
that, on average, the heuristics instantiating the paradigm extended by E benefited from E.

heuristic LETTER (H) MUTA AIDS PROTEIN FP GREC

χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB χUB ŝUB

instantiations of the paradigm LSAPE-GED

NODE (0,0,0) 0.00 (0,1,1) 0.94 (0,1,0) 0.89 (0,1,1) 0.99 (0,1,0) 0.92 (0,1,0) 0.98
BP (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
BRANCH (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.67 (0,0,0) 0.00 (0,0,0) 0.68
BRANCH-FAST (0,0,0) 0.78 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.65 (0,0,0) 0.76
BRANCH-CONST (0,1,0) 0.93 (0,0,1) 0.68 (0,0,0) 0.00 (0,0,1) 0.75 (0,0,0) 0.00 (0,0,0) 0.81
STAR (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.70 (0,0,0) 0.00
SUBGRAPH (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
WALKS (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
RINGOPT (0,0,0) 0.63 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
RINGMS (0,0,0) 0.00 (0,0,1) 0.63 (0,0,0) 0.58 (0,0,1) 0.00 (0,0,0) 0.64 (0,0,0) 0.00
RING-ML1-SVM (0,0,1) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
RING-MLDNN (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
PREDICT1-SVM (0,0,1) 0.55 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
PREDICTDNN (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
extensions of the paradigm LSAPE-GED

MULTI-SOL (0,0,0) 0.00 (0,0,1) 0.46 (0,0,0) 0.59 (0,0,1) 0.62 (0,0,0) 0.38 (0,0,0) 0.62
CENTRALITIES (0,0,0) 0.48 (0,0,1) 0.58 (0,0,0) 0.44 (0,0,1) 0.49 (0,0,0) 0.41 (0,0,0) 0.58

instantiations of the paradigm LP-GED

F1 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
F2 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
COMPACT-MIP (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
ADJ-IP (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00

instantiations of the paradigm LS-GED

REFINE (1,0,0) 0.64 (0,0,1) 0.66 (0,0,0) 0.64 (0,0,1) 0.66 (0,0,1) 0.67 (0,0,1) 0.00
K-REFINE (1,0,0) 0.63 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00
BP-BEAM (1,0,0) 0.62 (0,0,0) 0.30 (0,0,0) 0.60 (0,0,1) 0.00 (0,0,0) 0.63 (0,0,1) 0.00
IBP-BEAM (1,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,1) 0.00 (0,0,1) 0.00
IPFP (1,0,0) 0.63 (1,0,1) 0.67 (1,0,1) 0.67 (1,0,1) 0.67 (1,0,1) 0.67 (1,0,1) 0.67
extensions of the paradigm LS-GED

MULTI-START (1,0,0) 0.40 (1,0,1) 0.91 (1,0,1) 0.85 (1,0,1) 0.80 (1,0,1) 0.68 (1,0,1) 0.83
RANDPOST (1,0,0) 0.00 (1,0,1) 0.29 (1,0,1) 0.32 (1,0,1) 0.40 (1,0,1) 0.00 (1,0,1) 0.17

miscellaneous heuristics
BRANCH-TIGHT (0,0,0) 0.62 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00
SA (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,1) 0.00 (0,0,0) 0.00 (0,0,0) 0.00

benefit from the extensions CENTRALITIES and MULTI-SOL.
However, on each dataset, some instantiations of LSAPE-GED
did benefit from the extensions, as some algorithms using
CENTRALITIES and MULTI-SOL were Pareto optimal on al-
most all datasets (cf. Table 8).

We also observe that the average aggregated joint upper
bound scores of the extensions MULTI-START and RANDPOST
of the paradigm LS-GED are, respectively, clearly larger and
clearly smaller than 0.5 (cf. Figure 12a). That is, on average,
instantiations of LS-GED benefited from MULTI-START but
not from RANDPOST. However, RANDPOST still turned out to

be used by Pareto optimal algorithms on all datasets except
for the datasets LETTER (H) and FP, which contain very
small graphs. MULTI-START was used by Pareto optimal
algorithms on all datasets (cf. Table 8). Moreover, we see
that, on all six datasets, algorithms using MULTI-START and
RANDPOST yielded the tightest upper bounds and the best
classification coefficients (cf. Figure 12b and Figure 12d).

The Figures 23 to 28 in Appendix B show the dominance
graphs induced by the relation �UB for each dataset and
hence visualize the results in more detail.

26 David B. Blumenthal et al.
B
R
A
N
C
H
-
C
O
N
S
T

N
O
D
E

A
D
J
-
I
P

F
2

B
R
A
N
C
H
-
F
A
S
T

B
R
A
N
C
H

B
R
A
N
C
H
-
T
I
G
H
T

B
R
A
N
C
H
-
C
O
M
P
A
C
T

0

0.5

1

av
g D

ŝ L
B

(a) Average aggregated joint lower bound scores.

A
D
J
-
I
P

B
R
A
N
C
H
-
T
I
G
H
T

F
2

0

2

4

6

(∑
D

χ L
B
) 1

(b) Optimality w. r. t. tight-
ness of lower bound.

N
O
D
E

B
R
A
N
C
H
-
C
O
N
S
T

0

2

4

6

(∑
D

χ L
B
) 2

(c) Optimality w. r. t. run-
time among heuristics produc-
ing lower bounds.

B
R
A
N
C
H
-
T
I
G
H
T

A
D
J
-
I
P

B
R
A
N
C
H
-
C
O
N
S
T

H
Y
B
R
I
D

B
R
A
N
C
H
-
F
A
S
T

N
O
D
E

F
1

B
R
A
N
C
H

F
2

S
T
A
R

B
R
A
N
C
H
-
C
O
M
P
A
C
T

0

2

4

6

(∑
D

χ L
B
) 3

(d) Optimality w. r. t. lower bound classification coefficient.

Fig. 10 Average aggregated joint lower bound scores and numbers of
datasets where heuristics are optimal w. r. t. tightness of lower bound,
runtime, and lower bound classification coefficient, respectively. Only
non-zero statistics are displayed.

9.7 Gaps between lower and upper bounds

Table 9 shows the tightest average lower and upper bounds
d?

LB and d?
UB for all datasets and the gaps between them. We

see that the best upper bounds overestimate the best lower
bounds (and hence, a fortiori, the exact GED) by at most
4.23 % and only 1.99 % on average. Given the hardness of
exactly computing GED (cf. Section 1), this is a remarkable
result. On all datasets, d?

UB was computed by IPFP (cf. Sec-
tion 9.6). On FP, d?

LB was computed by BRANCH-TIGHT; on
PROTEIN, it was computed by F2; and on all other datasets,
it was computed by ADJ-IP (cf. Section 9.5).

9.8 Effect of graph sizes

We also carried out experiments for evaluating the effect
of the graph sizes on the compared methods. For this, we

6 8

10−4

10−3

10−2

dUB

ti
n

s

LETTER (H)

3.5 4 4.5

10−5

10−4

10−3

10−2

dUB

ti
n

s

FP

80 100 120 140
10−5

10−3

10−1

dUB

ti
n

s
AIDS

100 150 200
10−5

10−2

101

dUB

ti
n

s

MUTA

1,000 1,200 1,400

10−4

10−3

10−2

10−1

dUB

ti
n

s

GREC

300 350 400 450

10−4

10−2

100

dUB

ti
n

s
PROTEIN

NODE BP BRANCH BRANCH-FAST

BRANCH-CONST STAR SUBGRAPH WALKS

RINGOPT RINGMS RING-MLDNN RING-ML1-SVM

PREDICTDNN PREDICT1-SVM REFINE K-REFINE

IPFP BP-BEAM IBP-BEAM F1

F2 COMPACT-MIP ADJ-IP BRANCH-TIGHT

SA

Fig. 11 Average upper bounds vs. average runtime. Instantiations of
LSAPE-GED, LP-GED, and LS-GED are displayed as circles, squares, and
diamonds, respectively; miscellaneous methods are displayed as trian-
gles. For each heuristic H, the results are displayed only for the configu-
ration that does not use any extensions.

partitioned the datasets AIDS, MUTA, and PROTEIN that also
contain larger graphs into subsets of graphs whose num-
bers of nodes is between 1 and 10, 11 and 20, and so
forth. Subsequently, we randomly sampled 10 graphs from
each subset with at least 10 graphs, and, for each sample
Dsample, ran all compared methods on all pairs of graphs
(G,H) ∈Dsample×Dsample.

Figure 13 shows the observed trends for the average run-
times t and the average lower and upper bounds dLB and
dUB. In order not to overcrowd the plots, trends are displayed
only for the five methods with the best average aggregated
joint lower and upper bound scores: BRANCH-CONST, NODE,

Comparing heuristics for graph edit distance computation 27
N
O
D
E

I
P
F
P

R
E
F
I
N
E

B
R
A
N
C
H
-
C
O
N
S
T

B
R
A
N
C
H
-
F
A
S
T

B
P
-
B
E
A
M

R
I
N
G
M
S

B
R
A
N
C
H

S
T
A
R

K
-
R
E
F
I
N
E

R
I
N
G
O
P
T

B
R
A
N
C
H
-
T
I
G
H
T

P
R
E
D
I
C
T
1
-
S
V
M

C
E
N
T
R
A
L
I
T
I
E
S

M
U
L
T
I
-
S
O
L

M
U
L
T
I
-
S
T
A
R
T

R
A
N
D
P
O
S
T

0

0.5

1

av
g D

ŝ U
B

(a) Average aggregated joint upper bound scores.

I
P
F
P

I
B
P
-
B
E
A
M

K
-
R
E
F
I
N
E

B
P
-
B
E
A
M

R
E
F
I
N
E

R
A
N
D
P
O
S
T

M
U
L
T
I
-
S
T
A
R
T

0

2

4

6

(∑
D

χ U
B
) 1

(b) Optimality w. r. t. tight-
ness of upper bound.

N
O
D
E

B
R
A
N
C
H
-
C
O
N
S
T

0

2

4

6

(∑
D

χ U
B
) 2

(c) Optimality w. r. t. run-
time among heuristics produc-
ing upper bounds.

I
P
F
P

I
B
P
-
B
E
A
M

K
-
R
E
F
I
N
E

R
E
F
I
N
E

B
R
A
N
C
H
-
C
O
N
S
T
F
1

B
R
A
N
C
H
-
F
A
S
T
B
P

R
I
N
G
O
P
T

B
P
-
B
E
A
M

P
R
E
D
I
C
T
1
-
S
V
M

N
O
D
E
F
2

R
I
N
G
M
S

R
I
N
G
-
M
L
1
-
S
V
M

B
R
A
N
C
H
-
T
I
G
H
T

A
D
J
-
I
P

B
R
A
N
C
H
S
A

S
T
A
R

W
A
L
K
S

S
U
B
G
R
A
P
H

C
E
N
T
R
A
L
I
T
I
E
S

M
U
L
T
I
-
S
O
L

R
A
N
D
P
O
S
T

M
U
L
T
I
-
S
T
A
R
T

0

2

4

6

(∑
D

χ U
B
) 3

(d) Optimality w. r. t. upper bound classification coefficient.

Fig. 12 Average aggregated joint upper bound scores and numbers of
datasets where heuristics are optimal w. r. t. tightness of upper bound,
runtime, and upper bound classification coefficient, respectively. Only
non-zero statistics are displayed.

Table 9 Tightest average lower and upper bounds.

dataset d?
LB d?

UB gap in %

AIDS 73.45 76.18 3.58
MUTA 93.76 97.90 4.23
PROTEIN 302.80 307.65 1.58
LETTER (H) 4.72 4.75 0.63
GREC 898.83 904.70 0.65
FP 3.04 3.08 1.30
average — — 1.99

ADJ-IP, F2, and BRANCH-FAST for dLB (cf. Figure 10a), and
NODE, IPFP, REFINE, BRANCH-CONST, and BRANCH-FAST

for dUB (cf. Figure 12a). As expected, instantiations of
LSAPE-GED were faster than instantiations of LS-GED, which,
in turn, were faster than instantiations of LP-GED. We also
see that, for all three datasets, there are hardly any crossing
points between the trends for the lower and upper bounds.
This is interesting, because it means that the graph sizes have

Table 10 Maximum and average lower bound classification coefficients
for all datasets, and slopes and p-values of the linear regression models
cLB ∼ dLB.

dataset c?LB avgcLB(ALG) mLB pLB

AIDS 0.15 0.13 1.11 ·10−3 2.51 ·10−5

MUTA 0.01 0.00 −2.33 ·10−5 4.76 ·10−1

PROTEIN 0.04 0.03 6.27 ·10−5 1.07 ·10−4

LETTER (H) 0.29 0.23 4.16 ·10−2 2.87 ·10−9

GREC 0.37 0.32 1.97 ·10−4 9.29 ·10−5

FP 0.12 0.09 3.38 ·10−2 1.11 ·10−9

average 0.16 0.14 1.28 ·10−2 —

little effect on the question which of two heuristic H1 and H2
yields the tighter lower or upper bound. Finally, we observe
that, on PROTEIN, the gap between the tightest average lower
and upper bounds is very narrow across all graph sizes. On
AIDS and MUTA, the gaps grow with increasing graph sizes,
but are still moderate also on the samples that contain the
largest graphs (also cf. Table 9).

9.9 Classification coefficients vs. tightness of lower and
upper bounds

Figure 14 and Table 10 relate the lower bounds of the algo-
rithms producing lower bounds to the obtained lower bound
classification coefficients. Figure 14 contains plots for all
datasets. In each of them, each black dot represents an algo-
rithm that yields a lower bound and the grey line visualizes
the obtained linear regression model cLB ∼ dLB. For each
dataset, Table 10 summarizes the slopes and p-values of the
models, as well as the maximum and average lower bound
classification coefficients.

We observe that, on MUTA, all obtained classification
coefficients either equal 0.00 or 0.01. This can be explained
by the fact that, for both of its classes, MUTA contains
graphs of very different sizes, which leads to a small dif-
ference between intra- and inter-class distances. As we have
cLB(ALG) ∈ {0.00,0.01} for all algorithms ALG that produce
lower bounds, the obtained linear regression model has a very
high p-value and hence is not statistically significant.

For all other datasets, the obtained linear regression mod-
els have p-values smaller than 10−3 and are hence highly
significant. Furthermore, all linear regression models except
the statistically insignificant model for MUTA have a positive
slope. That is, tight lower bounds tend to go hand in hand
with good classification coefficients.

Figure 15 and Table 11 relate the upper bounds of the
algorithms producing upper bounds to the obtained upper
bound classification coefficients. Figure 15 contains plots
for all datasets. In each of them, each black dot represents
an algorithm that yields an upper bound and the grey line
visualizes the obtained linear regression model cUB ∼ dUB.

28 David B. Blumenthal et al.

20 40 60 80

10−4

10−2

100

|V G|

ti
n

s

AIDS

0 20 40 60 80 100
10−5

10−3

10−1

|V G|
ti

n
s

MUTA

20 40

10−5

10−3

10−1

|V G|

ti
n

s

PROTEIN

20 40 60 80
0

50

100

150

|V G|

d L
B

(d
ot

te
d)

&
d U

B
(d

as
he

d)

AIDS

0 20 40 60 80 100
0

50

100

150

|V G|

d L
B

(d
ot

te
d)

&
d U

B
(d

as
he

d)

MUTA

20 40

200

400

|V G|
d L

B
(d

ot
te

d)
&

d U
B

(d
as

he
d)

PROTEIN

NODE BRANCH-CONST BRANCH-FAST REFINE IPFP F2 ADJ-IP

Fig. 13 ffect of graph sizes on methods with best average aggregated joint lower and upper bound scores. For each heuristic H, the results are
displayed only for the configuration that does not use any extensions.

For each dataset, Table 11 summarizes the slopes and p-
values of the models, as well as the maximum and average
upper bound classification coefficients.

We again note that, on MUTA, all obtained classifica-
tion coefficients either equal 0.00 or 0.01. Since we tested
many more algorithms that compute upper bounds than algo-
rithms that yield lower bounds,4 the linear regression model
cUB ∼ dUB for MUTA nonetheless has a p-value smaller than
10−3 and is hence still highly statistically significant. How-
ever, its p-value is much larger than the p-values of the lin-
ear regression models cUB ∼ dUB we obtained for the other
datasets.

We observe that, for all datasets, the slopes of the lin-
ear regression models cUB ∼ dUB are positive. We can hence
draw the same conclusion as for the lower bounds, namely,
that tight upper bounds tend to go hand in hand with good
classification coefficients. These findings allow us to posi-
tively answer the meta-question Q1 raised in the introduction:
It is indeed beneficial to use GED as a guidance for the de-
sign of graph distance measures that are to be used within
pattern recognition frameworks.

4 To be precise, we tested 19 algorithms that compute lower bounds
and 173 algorithms that compute upper bounds. The reason for this is
that the extensions of the paradigms LSAPE-GED and LS-GED only affect
the upper bounds.

Table 11 Maximum and average upper bound classification coefficients
for all datasets, and slopes and p-values of the linear regression models
cUB ∼ dUB.

dataset c?UB avgcUB(ALG) mUB pUB

AIDS 0.15 0.11 −1.95 ·10−3 5.47 ·10−136

MUTA 0.01 0.01 −5.36 ·10−5 3.76 ·10−5

PROTEIN 0.04 0.03 −1.45 ·10−4 3.91 ·10−43

LETTER (H) 0.33 0.25 −4.97 ·10−2 3.67 ·10−43

GREC 0.35 0.27 −5.97 ·10−4 3.12 ·10−82

FP 0.11 0.10 −5.29 ·10−2 1.69 ·10−35

average 0.17 0.13 −1.76 ·10−2 —

The second meta-question Q2 asked whether lower or
upper bounds for GED are better suited for use as graph
distance measures within classification frameworks. Since
the classification coefficients induced by the lower and upper
bounds turned out to be very similar, this question cannot
be answered as straightforwardly as Q1. However, there is a
tendency: While the average lower bound classification coeffi-
cients were slightly better than the average upper bound clas-
sification coefficients, the opposite can be observed for the
maximum lower and upper bound classification coefficients.
Moreover, on average, the slopes of the linear regression
models cUB ∼ dUB are slightly steeper than the slopes of the

Comparing heuristics for graph edit distance computation 29

0 2 4

0

0.2

0.4

dLB

c L
B

LETTER (H)

0 1 2 3

0

0.2

0.4

dLB
c L

B

FP

0 20 40 60 80

0

0.2

0.4

dLB

c L
B

AIDS

0 50 100

0

0.2

0.4

dLB

c L
B

MUTA

0 200 400 600 800

0

0.2

0.4

dLB

c L
B

GREC

0 100 200 300

0

0.2

0.4

dLB

c L
B

PROTEIN

Fig. 14 Average lower bounds vs. lower bound classification coeffi-
cients. Each black dot represents one algorithm that computes a lower
bound. The linear regression model cLB ∼ dLB is displayed in grey.

linear regression models cLB ∼ dLB. Together, these observa-
tions suggest that the upper bound classification coefficients
benefit more from tight upper bounds than the lower bound
classification coefficients benefit from tight lower bounds.
As a rule of thumb, we can hence conclude that tight upper
bounds for GED (e. g., the upper bound computed by IPFP)
should be used for classification purposes, if one is willing to
invest a lot of time in the computation of the graph distance
measure. Otherwise, a quickly computable lower bound such
as the one produced by BRANCH-CONST should be employed.

10 Conclusions and future work

In this paper, we provided a systematic overview of the state
of the art for heuristically computing GED. In total, we pre-
sented 30 different heuristics that were initially suggested
in 28 different articles published from 2006 on. Thirteen
heuristics were modeled as instantiations or extensions of
the paradigm LSAPE-GED, which generalizes algorithms that
upper and, possibly, lower bound GED via transformations to
LSAPE. Four heuristics were modeled as instantiations of the
paradigm LP-GED, which uses linear programming for com-
puting lower and upper bounds for GED. Seven heuristics
were modeled as instantiation or extensions of the paradigm
LS-GED, a local search based approach for upper bounding
GED. The remaining six heuristics do not fit within any of
the suggested paradigms and were hence presented as mis-
cellaneous heuristics.

6 8

0

0.2

0.4

dUB

c U
B

LETTER (H)

3 3.5 4 4.5

0

0.2

0.4

dUB

c U
B

FP

80 100 120 140

0

0.2

0.4

dUB

c U
B

AIDS

100 150 200

0

0.2

0.4

dUB

c U
B

MUTA

1,000 1,200 1,400

0

0.2

0.4

dUB

c U
B

GREC

300 350 400 450

0

0.2

0.4

dUB

c U
B

PROTEIN

Fig. 15 Average upper bounds vs. upper bound classification coeffi-
cients. Each black dot represents one algorithm that computes an upper
bound. The linear regression model cUB ∼ dUB is displayed in grey.

We reimplemented all methods in C++ and empirically
evaluated them by carrying out experiments on six differ-
ent benchmark datasets. As the gap between tightest aver-
age lower bounds and tightest average upper bounds never
exceeded 4.23 %, the experiments showed that despite the
high theoretical complexity of approximating GED, on small
to medium-sized graphs as the ones contained in the test
datasets, GED can be bounded within tight margins.

On average, the instantiation ADJ-IP of LP-GED sug-
gested in [36] computed the tightest lower bounds, followed
by the LP-GED instantiation F2 [44] and the miscellaneous
heuristic BRANCH-TIGHT [9]. On all datasets, the tightest
upper bounds were computed by the instantiation IPFP of
LS-GED suggested in [7, 14, 16]. The instantiations NODE

[36], BRANCH-CONST [70, 71], and BRANCH-FAST [8, 9] of
LSAPE-GED achieved excellent tradeoffs between tightness,
runtime, and classification coefficient — both w. r. t. the pro-
duced lower and w. r. t. the produced upper bounds.

Furthermore, we addressed a tacit assumption made in
many publications on GED, which states that the tighter a
lower or upper bound for GED, the better its performance
when used as a graph distance measure within pattern recog-
nition frameworks. Our experiments provided thorough ev-
idence to support this assumption. They hence justify the
ongoing competition for tight upper and lower bounds.

Given the small gaps between the tightest currently avail-
able lower and upper bounds for GED, we see little room
for further tightening these bounds. Instead, we suggest that

30 David B. Blumenthal et al.

future work on the heuristic computation of GED should
focus on the task of speeding up those existing heuristics that
yield the tightest currently available bounds.

References

1. Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L.,
Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest
2016: Results and future challenges. Pattern Recognit. Lett. 100,
96–103 (2017). DOI 10.1016/j.patrec.2017.10.007

2. Abu-Aisheh, Z., Raveaux, R., Ramel, J.: A graph database repos-
itory and performance evaluation metrics for graph edit distance.
In: C. Liu, B. Luo, W.G. Kropatsch, J. Cheng (eds.) GbRPR 2015,
LNCS, vol. 9069, pp. 138–147. Springer, Cham (2015). DOI
10.1007/978-3-319-18224-7 14

3. Babai, L.: Graph isomorphism in quasipolynomial time [extended
abstract]. In: D. Wichs, Y. Mansour (eds.) STOC 2016, pp. 684–
697. ACM (2016). DOI 10.1145/2897518.2897542

4. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Ring based
approximation of graph edit distance. In: X. Bai, E. Hancock,
T. Ho, R. Wilson, B. Biggio, A. Robles-Kelly (eds.) S+SSPR 2018,
LNCS, vol. 11004, pp. 293–303. Springer, Cham (2018). DOI
10.1007/978-3-319-97785-0 28

5. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: GEDLIB: A
C++ library for graph edit distance computation. In: D. Conte, J.Y.
Ramel, P. Foggia (eds.) GbRPR 2019, LNCS, vol. 11510, pp. 14–24.
Springer, Cham (2019). DOI 10.1007/978-3-030-20081-7 2

6. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Upper
bounding GED via transformations to LSAPE based on rings and
machine learning. arXiv:1907.00203 [cs.DS] (2019)

7. Blumenthal, D.B., Daller, E., Bougleux, S., Brun, L., Gamper, J.:
Quasimetric graph edit distance as a compact quadratic assignment
problem. In: ICPR 2018, pp. 934–939. IEEE Computer Society
(2018). DOI 10.1109/ICPR.2018.8546055

8. Blumenthal, D.B., Gamper, J.: Correcting and speeding-up bounds
for non-uniform graph edit distance. In: ICDE 2017, pp. 131–134.
IEEE Computer Society (2017). DOI 10.1109/ICDE.2017.57

9. Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph
edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516
(2018). DOI 10.1109/TKDE.2017.2772243

10. Blumenthal, D.B., Gamper, J.: On the exact computation of the
graph edit distance. Pattern Recognit. Lett. (2018). DOI 10.1016/j.
patrec.2018.05.002. In press.

11. Bonacich, P.: Power and centrality: A family of measures. Am. J.
Sociol. 92(5), 1170–1182 (1987). DOI 10.1086/228631

12. Boria, N., Blumenthal, D.B., Bougleux, S., Brun, L.: Improved
local search for graph edit distance. arXiv:1907.02929 [cs.DS]
(2019)

13. Boria, N., Bougleux, S., Brun, L.: Approximating GED using a
stochastic generator and multistart IPFP. In: X. Bai, E.R. Han-
cock, T.K. Ho, R.C. Wilson, B. Biggio, A. Robles-Kelly (eds.)
S+SSPR 2018, pp. 460–469. Springer, Cham (2018). DOI
10.1007/978-3-319-97785-0 44

14. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento,
M.: Graph edit distance as a quadratic assignment problem. Pattern
Recognit. Lett. 87, 38–46 (2017). DOI 10.1016/j.patrec.2016.10.
001

15. Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast lin-
ear sum assignment with error-correction and no cost constraints.
Pattern Recognit. Lett. (2018). DOI 10.1016/j.patrec.2018.03.032

16. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a
quadratic program. In: ICPR 2016, pp. 1701–1706. IEEE Computer
Society (2016). DOI 10.1109/ICPR.2016.7899881

17. Bougleux, S., Gaüzère, B., Brun, L.: A Hungarian algorithm for
error-correcting graph matching. In: P. Foggia, C. Liu, M. Vento
(eds.) GbRPR 2017, LNCS, vol. 10310, pp. 118–127. Springer,
Cham (2017). DOI 10.1007/978-3-319-58961-9 11

18. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. 30(1-7), 107–117 (1998). DOI
10.1016/S0169-7552(98)00110-X

19. Brun, L., Foggia, P., Vento, M.: Trends in graph-based represen-
tations for pattern recognition. Pattern Recognit. Lett. (2018).
DOI 10.1016/j.patrec.2018.03.016. In press.

20. Bunke, H., Allermann, G.: Inexact graph matching for structural
pattern recognition. Pattern Recognit. Lett. 1(4), 245–253 (1983).
DOI 10.1016/0167-8655(83)90033-8

21. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph
edit distance computation combining bipartite matching and exact
neighborhood substructure distance. In: C. Liu, B. Luo, W.G.
Kropatsch, J. Cheng (eds.) GbRPR 2015, LNCS, vol. 9069, pp. 188–
197. Springer, Cham (2015). DOI 10.1007/978-3-319-18224-7 19

22. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector
machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011). DOI
10.1145/1961189.1961199

23. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph
matching in pattern recognition. Int. J. Pattern Recognit. Artif.
Intell. 18(3), 265–298 (2004). DOI 10.1142/S0218001404003228

24. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans.
Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004). DOI 10.
1109/TPAMI.2004.75

25. Cortés, X., Serratosa, F., Moreno-Garcı́a, C.F.: On the influence
of node centralities on graph edit distance for graph classification.
In: C. Liu, B. Luo, W.G. Kropatsch, J. Cheng (eds.) GbRPR 2015,
LNCS, vol. 9069, pp. 231–241. Springer, Cham (2015). DOI
10.1007/978-3-319-18224-7 23

26. Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph
edit distance by several local searches in parallel. In: A. Fred,
G.S. di Baja, M.D. Marsico (eds.) ICPRAM 2018, pp. 149–158.
SciTePress (2018). DOI 10.5220/0006599901490158

27. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph
edit distance using bipartite graph matching. In: C. Liu, B. Luo,
W.G. Kropatsch, J. Cheng (eds.) GbRPR 2015, LNCS, vol. 9069, pp.
77–86. Springer, Cham (2015). DOI 10.1007/978-3-319-18224-7
8

28. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Ap-
proximation of graph edit distance based on Hausdorff matching.
Pattern Recognit. 48(2), 331–343 (2015). DOI 10.1016/j.patcog.
2014.07.015

29. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning
in pattern recognition in the last 10 years. Int. J. Pattern Recognit.
Artif. Intell. 28(1), 1450001:1–1450001:40 (2014). DOI 10.1142/
S0218001414500013

30. Frank, M., Wolfe, P.: An algorithm for quadratic programming.
Nav. Res. Logist. Q. 3(12), 95–110 (1956). DOI 10.1002/nav.
3800030109

31. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit
distance. Pattern Anal. Appl. 13(1), 113–129 (2010). DOI
10.1007/s10044-008-0141-y

32. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate
graph edit distance guided by bipartite matching of bags of walks.
In: P. Fränti, G. Brown, M. Loog, F. Escolano, M. Pelillo (eds.)
S+SSPR 2014, LNCS, vol. 8621, pp. 73–82. Springer, Cham (2014).
DOI 10.1007/978-3-662-44415-3 8

33. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). URL http:

//eigen.tuxfamily.org

34. Gurobi Optimization LLC: Gurobi Optimizer Reference Manual.
URL http://www.gurobi.com

35. Henry, E.R.: Classification and Uses of Finger Prints. Routledge,
London (1900)

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.gurobi.com

Comparing heuristics for graph edit distance computation 31

36. Justice, D., Hero, A.: A binary linear programming formulation of
the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell.
28(8), 1200–1214 (2006). DOI 10.1109/TPAMI.2006.152

37. Karmarkar, N.: A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4(4), 373–396 (1984). DOI 10.1007/
BF02579150

38. Kuhn, H.W.: The Hungarian method for the assignment problem.
Nav. Res. Logist. Q. 2(1-2), 83–97 (1955). DOI 10.1002/nav.
3800020109

39. Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization
with the MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–
44:15 (2011). DOI 10.1145/1916461.1916468

40. Le Gall, F.: Powers of tensors and fast matrix multiplication. In:
K. Nabeshima, K. Nagasaka, F. Winkler, Á. Szántó (eds.) ISSAC
2014, pp. 296–303. ACM (2014). DOI 10.1145/2608628.2608664

41. Lee, L., Lumsdaine, A., Siek, J.: The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Longman, Boston,
MA (2002)

42. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected
fixed point method for graph matching and MAP inference. In:
Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I. Williams, A. Cu-
lotta (eds.) NIPS 2009, pp. 1114–1122. Curran Associates (2009)

43. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: Ex-
act graph edit distance computation using a binary linear program.
In: A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano, R. Wilson
(eds.) S+SSPR 2016, LNCS, vol. 10029, pp. 485–495. Springer,
Cham (2016). DOI 10.1007/978-3-319-49055-7 43

44. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.:
New binary linear programming formulation to compute the graph
edit distance. Pattern Recognit. 72, 254–265 (2017). DOI 10.1016/
j.patcog.2017.07.029

45. Lin, C.L.: Hardness of approximating graph transformation prob-
lem. In: D.Z. Du, X.S. Zhang (eds.) Algorithms and Computation,
LNCS, vol. 834, pp. 74–82. Springer, Berlin, Heidelberg (1994).
DOI 10.1007/3-540-58325-4 168

46. Munkres, J.: Algorithms for the assignment and transportation
problems. SIAM J. Appl. Math. 5(1), 32–38 (1957). DOI 10.1137/
0105003

47. Nissen, S.: Implementation of a fast artificial neural network library
(FANN). Tech. rep., Department of Computer Science, University
of Copenhagen (2003). URL http://fann.sourceforge.net/

report/

48. Ozdemir, E., Gunduz-Demir, C.: A hybrid classification model for
digital pathology using structural and statistical pattern recognition.
IEEE Trans. Med. Imaging 32(2), 474–483 (2013). DOI 10.1109/
TMI.2012.2230186

49. Riesen, K.: Structural Pattern Recognition with Graph Edit Dis-
tance. Advances in Computer Vision and Pattern Recognition.
Springer, Cham (2015). DOI 10.1007/978-3-319-27252-8

50. Riesen, K., Bunke, H.: IAM graph database repository for graph
based pattern recognition and machine learning. In: N. da Vi-
toria Lobo, T. Kasparis, F. Roli, J.T. Kwok, M. Georgiopoulos,
G.C. Anagnostopoulos, M. Loog (eds.) S+SSPR 2008, LNCS, vol.
5342, pp. 287–297. Springer, Berlin, Heidelberg (2008). DOI
10.1007/978-3-540-89689-0 33

51. Riesen, K., Bunke, H.: Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image Vis. Comput.
27(7), 950–959 (2009). DOI 10.1016/j.imavis.2008.04.004

52. Riesen, K., Bunke, H.: Graph Classification and Clustering Based
on Vector Space Embedding, Series in Machine Perception and
Artificial Intelligence, vol. 77. World Scientific, Singapore (2010).
DOI 10.1142/7731

53. Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance
approximation by centrality measures. In: ICPR 2014, pp. 3910–
3914. IEEE Computer Society (2014). DOI 10.1109/ICPR.2014.
671

54. Riesen, K., Ferrer, M.: Predicting the correctness of node assign-
ments in bipartite graph matching. Pattern Recognit. Lett. 69, 8–14
(2016). DOI 10.1016/j.patrec.2015.10.007

55. Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of
graph edit distance in quadratic time. In: C. Liu, B. Luo, W.G.
Kropatsch, J. Cheng (eds.) GbRPR 2015, LNCS, vol. 9069, pp.
3–12. Springer, Cham (2015). DOI 10.1007/978-3-319-18224-7 1

56. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph
matching and beam search for graph edit distance approximation.
In: N.E. Gayar, F. Schwenker, C. Suen (eds.) ANNPR 2014, LNCS,
vol. 8774, pp. 117–128. Springer, Cham (2014). DOI 10.1007/
978-3-319-11656-3 11

57. Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower
bounds of graph edit distance in cubic time. In: N.E. Ga-
yar, F. Schwenker, C. Suen (eds.) ANNPR 2014, LNCS, vol.
8774, pp. 129–140. Springer, Heidelberg (2014). DOI 10.1007/
978-3-319-11656-3

58. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance
approximation with simulated annealing. In: P. Foggia, C. Liu,
M. Vento (eds.) GbRPR 2017, LNCS, vol. 10310, pp. 222–231.
Springer, Cham (2017). DOI 10.1007/978-3-319-58961-9 20

59. Sanfeliu, A., Fu, K.S.: A distance measure between attributed rela-
tional graphs for pattern recognition. IEEE Trans. Syst. Man Cy-
bern. 13(3), 353–362 (1983). DOI 10.1109/TSMC.1983.6313167

60. Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C.,
Huhn, G., Schomburg, D.: BRENDA, the enzyme database:
Updates and major new developments. Nucleic Acids Res.
32(Database-Issue), 431–433 (2004). DOI 10.1093/nar/gkh081

61. Stauffer, M., Fischer, A., Riesen, K.: A novel graph database
for handwritten word images. In: A. Robles-Kelly, M. Loog,
B. Biggio, F. Escolano, R. Wilson (eds.) S+SSPR 2016, LNCS,
vol. 10029, pp. 553–563. Springer, Cham (2016). DOI 10.1007/
978-3-319-49055-7 49

62. Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A survey on
applications of bipartite graph edit distance. In: P. Foggia, C. Liu,
M. Vento (eds.) GbRPR 2017, LNCS, vol. 10310, pp. 242–252.
Springer, Cham (2017). DOI 10.1007/978-3-319-58961-9 22

63. Strassen, V.: Gaussian elimination is not optimal. Numer. Math.
13(4), 354–356 (1969). DOI 10.1007/BF02165411

64. Uno, T.: Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. In: H.W. Leong, H. Imai,
S. Jain (eds.) ISAAC 1997, LNCS, vol. 1350, pp. 92–101. Springer,
Berlin, Heidelberg (1997). DOI 10.1007/3-540-63890-3 11

65. Uno, T.: A fast algorithm for enumerating bipartite perfect match-
ings. In: P. Eades, T. Takaoka (eds.) ISAAC 2001, LNCS, vol.
2223, pp. 367–379. Springer, Berlin, Heidelberg (2001). DOI
10.1007/3-540-45678-3 32

66. Vento, M.: A long trip in the charming world of graphs for pattern
recognition. Pattern Recognit. 48(2), 291–301 (2015). DOI 10.
1016/j.patcog.2014.01.002

67. Wang, X., Ding, X., Tung, A.K.H., Ying, S., Jin, H.: An efficient
graph indexing method. In: A. Kementsietsidis, M.A.V. Salles
(eds.) ICDE 2012, pp. 210–221. IEEE Computer Society (2012).
DOI 10.1109/ICDE.2012.28

68. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing
stars: On approximating graph edit distance. PVLDB 2(1), 25–36
(2009). DOI 10.14778/1687627.1687631

69. Zhao, X., Xiao, C., Lin, X., Zhang, W., Wang, Y.: Efficient structure
similarity searches: a partition-based approach. VLDB J. 27(1),
53–78 (2018). DOI 10.1007/s00778-017-0487-0

70. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Graph similarity
search with edit distance constraint in large graph databases. In:
Q. He, A. Iyengar, W. Nejdl, J. Pei, R. Rastogi (eds.) CIKM 2013,
pp. 1595–1600. ACM (2013). DOI 10.1145/2505515.2505723

71. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph
similarity search over large graph databases. IEEE Trans. Knowl.
Data Eng. 27(4), 964–978 (2015). DOI 10.1109/TKDE.2014.
2349924

http://fann.sourceforge.net/report/
http://fann.sourceforge.net/report/

32 David B. Blumenthal et al.

A Datasets and edit cost functions

– The datasets AIDS and MUTA: Graphs contained in AIDS and MUTA
represent molecular compounds. The molecules represented by the
graphs contained in AIDS are divided into the class of molecules
that do and the class of molecules that do not exhibit activity agains
HIV. Similarly, the molecules represented by the graphs contained
in MUTA are divided into the class of molecules that do and the
class of molecules that do not cause genetic mutation. The nodes of
the graphs contained in AIDS and MUTA are labeled with chemical
symbols, and their edges are labeled with a valence (either 1 or 2).
Node edit costs are defined as cV (α,α ′) := 5.5 ·δα 6=α ′ , cV (α,ε) :=
2.75, and cV (ε,α

′) := 2.75, for all (α,α ′) ∈ ΣV ×ΣV . Edge edit
costs are defined as cE(β ,β

′) := 1.65 · δβ 6=β ′ , cE(β ,ε) := 0.825,
and cE(ε,β

′) := 0.825, for all (β ,β ′) ∈ ΣE ×ΣE .

– The dataset PROTEIN: Graphs contained in PROTEIN represent
proteins which are annotated with their EC classes (EC1, EC2,
EC3, EC4, EC5, and EC6) [60]. Nodes are labeled with tuples
(t,s), where t is the node’s type (helix, sheet, or loop) and s is
its amino acid sequence. Nodes are connected via structural or
sequential edges or both, i. e., edges (ui,u j) are labeled with tu-
ples (t1, t2), where t1 is the type of the first edge connecting ui
and u j and t2 is the type of the second edge connecting ui and
u j (possibly null). Node edit costs are defined as cV (α,α ′) :=
16.5 · δα.t 6=α ′.t + 0.75 · δα.t=α ′.t ·LD(α.s,α ′.s)), cV (α,ε) := 8.25,
and cV (ε,α

′) := 8.25, for all (α,α ′) ∈ ΣV ×ΣV , where LD(·, ·)
is Levenshtein’s string edit distance. Edge edit costs are de-
fined as cE(β ,β

′) := 0.25 ·LSAPE(Cβ ,β ′), cE(β ,ε) := 0.25 · f (β),
and cE(ε,β

′) := 0.25 · f (β ′), for all (β ,β ′) ∈ ΣE × ΣE , where
f (β) := 1 + δβ .t2 6=null and Cβ ,β ′ ∈ R(f (β)+1)×(f (β ′)+1) is con-

structed as cβ ,β ′
r,s := 2 · δβ .tr 6=β ′.ts and cβ ,β ′

r, f (β ′)+1 := cβ ,β ′
f (β)+1,s := 1,

for all (r,s) ∈ [f (β)]× [f (β ′)].

– The dataset LETTER (H): Graphs contained in LETTER (H) rep-
resent highly distorted drawings of the capital letters A, E, F, H,
I, K, L, M, N, T, V, W, X, Y, and Z. Nodes are labeled with two-
dimensional Euclidean coordinates. Edges are unlabeled. Node edit
costs are defined as cV (α,α ′) := 0.75 ·‖α−α ′‖, cV (α,ε) := 0.675,
and cV (ε,α

′) := 0.675, for all (α,α ′) ∈ ΣV × ΣV , where ‖·‖
is the Euclidean norm. The edge edit costs cE are defined as
cE(1,ε) := cE(ε,1) := 0.425.

– The dataset GREC: Graphs contained in GREC represent 22 dif-
ferent symbols from electronic and architectural drawings. Nodes
are labeled with tuples (t,x,y), where t equals one of four node
types and (x,y) is a two-dimensional Euclidean coordinate. Nodes
are connected via line or arc edges or both, i. e., edges (ui,u j) are
labeled with tuples (t1, t2), where t1 is the type of the first edge con-
necting ui and u j and t2 is the type of the second edge connecting ui
and u j (possibly null). Node edit costs are defined as cV (α,α ′) :=
0.5 · ‖α.(x,y)−α ′.(x,y)‖ ·δα.t=α ′.t +90 ·δα.t 6=α ′.t , cV (α,ε) := 45,
and cV (ε,α

′) := 45, for all (α,α ′) ∈ ΣV ×ΣV . Edge edit costs are
defined as cE(β ,β

′) := 0.5 ·LSAPE(Cβ ,β ′), cE(β ,ε) := 0.5 · f (β),
and cE(ε,β

′) := 0.5 · f (β ′), for all (β ,β ′) ∈ ΣE × ΣE , where
f (β) := 1 + δβ .t2 6=null and Cβ ,β ′ ∈ R(f (β)+1)×(f (β ′)+1) is con-

structed as cβ ,β ′
r,s := 30 · δβ .tr 6=β ′.ts and cβ ,β ′

r, f (β ′)+1 := cβ ,β ′
f (β)+1,s := 15

for all (r,s) ∈ [f (β)]× [f (β ′)].

– The dataset FP: Graphs contained in FP represent fingerprint images
which are annotated with their classes (arch, left loop, right loop,
and whorl) from the Galton-Henry classification system [35]. Nodes
are unlabeled and edges are labeled with an orientation β ∈ R
with −π/2 < β ≤ π/2. Node edit costs are defined as cV (1,ε) :=
cV (ε,1) := 0.525. Edge edit costs are defined as cE(β ,β

′) := 0.5 ·
min{|β − β ′|,π − |β − β ′|}, cE(β ,ε) := 0.375, and cE(ε,β

′) :=
0.375, for all (β ,β ′) ∈ ΣE ×ΣE .

IPFP (40,1,0,0)(
t in s dUB cUB sUB

1.63 ·10−2 3.08 0.11 0.67

)d?
UB

c?UB

IBP-BEAM

(40,0.5,1,0)

Fig. 16 Snapshot of the dominance graph induced by �UB on the
dataset FP shown in Figure 24.

B Visualization of experiments via dominance graphs

The Figures 17 to 28 visualize the transitive reductions of the domi-
nance graphs induced by �LB (Figures 17 to 22) and �UB (Figures 23
to 28), and hence provide more detailed views on the results of the
experiments reported in Section 9.5 and Section 9.6. In the domi-
nance graphs, instantiations of LSAPE-GED are displayed black on white,
instantiations of LP-GED are displayed black on light grey, instantia-
tions of LS-GED are displayed white on dark grey, and miscellaneous
heuristics are displayed white on black. For all algorithms instantiat-
ing LSAPE-GED, we display the configuration (K,γ) of the extensions
MULTI-SOL and CENTRALITIES in addition to the name of the heuristic.
Similarly, for all algorithms instantiating LS-GED, we display the con-
figuration (K,ρ,L,η) of the extensions MULTI-START and RANDPOST.
Recall that instantiations of LSAPE-GED are run without extensions just
in case (K,γ) = (1,0), and that instantiations of LS-GED are run without
extensions just in case (K,ρ,L,η) = (1,1,0,0) (cf. Section 9.2 for more
details). For Pareto optimal algorithms, we also show the test metrics
dLB|UB, t, and cLB|UB, and the joint score sLB|UB.

As the extensions MULTI-SOL and CENTRALITIES of LSAPE-GED
improve the computed upper bounds at the price of increased runtimes
but have no effect on the obtained lower bounds, for all instantiations of
LSAPE-GED, we only show the baseline configurations (K,γ) = (1,0) in
the dominance graphs induced by�LB. In the dominance graphs induced
by �UB, for each heuristic H, we only display those configurations that
are Pareto optimal (i. e., maximal w. r. t. �UB) or have a maximal joint
score sUB among all tested configurations of H.

In the transitive reduction of the dominance graphs induced by�LB,
we draw an arc from ALG1 to ALG2 just in case ALG1 �LB ALG2 and there
is no algorithm ALG3 such that ALG1 �LB ALG3 �LB ALG2. Arcs are blue
if, additionally, ALG1 yielded a tighter lower bound than ALG2, red if
ALG1 was faster than ALG2, and green if ALG1 had a better classification
coefficient than ALG2. Multicolored arcs indicate that several of these
relations holds. The graphs are oriented from left to right, such that an
algorithm is Pareto optimal just in case it appears in the left-most layer.
The colored labels d?

LB, t?LB, and c?LB highlight those Pareto optimal
algorithms that, respectively, yielded the tightest lower bound, exhibited
the best runtime behaviour among all heuristics that compute lower
bounds, or gave the best lower bound classification coefficient. The
dominance graphs induced by �UB are constructed analogously.

Example 3 Figure 16 exemplifies the visualizations of the dominance
graphs induced by �LB and �UB. It shows a snapshot of the domi-
nance graph induced by �UB on the dataset FP shown in Figure 24.
We see that IPFP run with the configuration (K,ρ,L,η) = (40,1,0,0)
was Pareto optimal on FP. The blue label d?

LB indicates that IPFP

(40,1,0,0) computed the tightest average upper bound on FP; the
green label c?LB tells us that it also yielded the best upper bound clas-
sification coefficient. Furthermore, we see that t(IPFP (40,1,0,0)) =
1.63 ·10−2 s, dUB(IPFP (40,1,0,0)) = 3.08, cUB(IPFP (40,1,0,0)) =
0.11, and sUB(IPFP (40,1,0,0)) = 0.67.

The blue-red arc from IPFP (40,1,0,0) to IBP-BEAM (40,0.5,1,0)
tells us that, on FP, IPFP with (K,ρ,L,η) = (40,1,0,0) domi-
nated IBP-BEAM with (K,ρ,L,η) = (40,0.5,1,0). More precisely, we
have t(IBP-BEAM (40,0.5,1,0)) > t(IPFP (40,1,0,0)) = 1.63 ·10−2 s,
dUB(IBP-BEAM (40,0.5,1,0)) > dUB(IPFP (40,1,0,0)) = 3.08, and
cUB(IBP-BEAM(40,0.5,1,0)) = cLB(IPFP(40,1,0,0)) = 0.11. As IPFP
and IBP-BEAM instantiate LS-GED, they are shown white on dark grey.

Comparing heuristics for graph edit distance computation 33

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

1.70 ·10−5 4.08 0.26 0.92

)t?LB

ADJ-IP(
t in s dLB cLB sLB

8.26 ·10−3 4.72 0.29 0.67

)d?
LB

c?LB

BRANCH-TIGHT(
t in s dLB cLB sLB

2.51 ·10−4 4.62 0.29 0.68

)
c?LB

STAR
(1,0.0)

NODE
(1,0.0)BRANCH-FAST

(1,0.0)
BRANCH
(1,0.0)

F1F2

COMPACT-MIP

HED

BRANCH-COMPACT

PARTITION

HYBRID

Fig. 17 Transitive reduction of dominance graph for lower bounds on the dataset LETTER (H).

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

2.20 ·10−5 2.93 0.12 0.75

)c?LB

NODE (1,0.0)(
t in s dLB cLB sLB

6.00 ·10−6 2.38 0.12 0.93

)t?LB
c?LB

BRANCH-FAST (1,0.0)(
t in s dLB cLB sLB

2.60 ·10−5 2.97 0.12 0.74

)c?LB

BRANCH (1,0.7)(
t in s dLB cLB sLB

4.60 ·10−5 3.03 0.11 0.68

)

BRANCH-TIGHT(
t in s dLB cLB sLB

1.29 ·10−3 3.04 0.11 0.64

)
d?

LB

STAR
(1,0.0)

F1

F2 COMPACT-MIP

ADJ-IP

HED

BRANCH-COMPACT

PARTITION

HYBRID

Fig. 18 Transitive reduction of dominance graph for lower bounds on the dataset FP.

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

3.80 ·10−5 71.13 0.15 0.76

)c?LB

NODE (1,0.0)(
t in s dLB cLB sLB

1.20 ·10−5 54.87 0.15 0.92

)t?LB
c?LB

F2(
t in s dLB cLB sLB

3.75 ·10−2 71.77 0.15 0.66

)
c?LB

ADJ-IP(
t in s dLB cLB sLB

6.83 ·10−2 73.45 0.15 0.67

)d?
LB

c?LB

STAR
(1,0.0)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.0)

F1
COMPACT-MIP

HED

BRANCH-COMPACT

PARTITION
HYBRID

BRANCH-TIGHT

Fig. 19 Transitive reduction of dominance graph for lower bounds on the dataset AIDS.

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

7.00 ·10−5 89.63 0.0 0.41

)

NODE (1,0.0)(
t in s dLB cLB sLB

2.00 ·10−5 71.41 0.0 0.59

)t?LB

F2(
t in s dLB cLB sLB

7.44 ·10−2 91.04 0.0 0.32

)

ADJ-IP(
t in s dLB cLB sLB

1.30 ·10−1 93.67 0.01 0.67

)d?
LB

c?LB

BRANCH-COMPACT(
t in s dLB cLB sLB

3.00 ·10−5 20.42 0.01 0.63

)
c?LB

STAR
(1,0.0)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.7)

F1

COMPACT-MIPHED

PARTITION

HYBRID

BRANCH-TIGHT

Fig. 20 Transitive reduction of dominance graph for lower bounds on the dataset MUTA.

34 David B. Blumenthal et al.

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

5.80 ·10−5 863.41 0.37 0.86

)c?LB

NODE (1,0.0)(
t in s dLB cLB sLB

3.60 ·10−5 794.99 0.35 0.94

)t?LB

BRANCH-FAST (1,0.0)(
t in s dLB cLB sLB

8.70 ·10−5 863.7 0.37 0.79

)c?LB

BRANCH (1,0.0)(
t in s dLB cLB sLB

1.50 ·10−4 863.74 0.37 0.73

)c?LB

F2(
t in s dLB cLB sLB

9.63 ·10−3 884.59 0.36 0.65

)

ADJ-IP(
t in s dLB cLB sLB

1.64 ·10−2 898.83 0.36 0.66

)
d?

LB

BRANCH-TIGHT(
t in s dLB cLB sLB

8.15 ·10−3 878.93 0.37 0.66

)
c?LB

STAR
(1,0.0)

F1

COMPACT-MIP

HED

BRANCH-COMPACT

PARTITION

HYBRID

Fig. 21 Transitive reduction of dominance graph for lower bounds on the dataset GREC.

BRANCH-CONST (1,0.0)(
t in s dLB cLB sLB

1.35 ·10−4 291.71 0.04 0.74

)c?LB

NODE (1,0.0)(
t in s dLB cLB sLB

3.50 ·10−5 278.71 0.04 0.97

)t?LB
c?LB

BRANCH-FAST (1,0.0)(
t in s dLB cLB sLB

2.07 ·10−4 293.38 0.04 0.71

)c?LB

BRANCH (1,0.0)(
t in s dLB cLB sLB

4.83 ·10−4 295.49 0.04 0.68

)c?LB

F2(
t in s dLB cLB sLB

7.63 ·10−2 302.8 0.04 0.67

)d?
LB

c?LB

STAR
(1,0.0)

F1

COMPACT-MIP

ADJ-IP

HED

BRANCH-COMPACT

PARTITION

HYBRID

BRANCH-TIGHT

Fig. 22 Transitive reduction of dominance graph for lower bounds on the dataset PROTEIN.

Comparing heuristics for graph edit distance computation 35

BRANCH-CONST (1,0.0)(
t in s dUB cUB sUB

1.70 ·10−5 5.08 0.28 0.93

)t?UB

BRANCH-FAST (1,0.7)(
t in s dUB cUB sUB

3.00 ·10−5 5.06 0.28 0.78

)

PREDICT1-SVM (1,0.0)(
t in s dUB cUB sUB

2.26 ·10−3 7.45 0.33 0.55

)c?UB

PREDICT1-SVM (1,0.7)(
t in s dUB cUB sUB

2.30 ·10−3 7.08 0.32 0.55

)

RINGOPT (1,0.0)(
t in s dUB cUB sUB

8.90 ·10−5 5.03 0.25 0.63

)

RINGOPT (1,0.7)(
t in s dUB cUB sUB

9.70 ·10−5 5.02 0.25 0.63

)

REFINE (1,1,0,0)(
t in s dUB cUB sUB

2.09 ·10−4 4.87 0.25 0.60

)

K-REFINE (1,1,0,0)(
t in s dUB cUB sUB

4.63 ·10−4 4.82 0.29 0.63

)

REFINE (10,1,0,0)(
t in s dUB cUB sUB

6.68 ·10−4 4.75 0.3 0.64

)d?
UB

IPFP (1,1,0,0)(
t in s dUB cUB sUB

3.71 ·10−4 4.8 0.28 0.63

)

BP-BEAM (10,1,0,0)(
t in s dUB cUB sUB

5.55 ·10−4 4.78 0.28 0.62

)

BRANCH-TIGHT(
t in s dUB cUB sUB

2.51 ·10−4 4.85 0.27 0.62

)

BP
(1,0.0)

STAR
(1,0.0)

NODE
(1,0.0)

WALKS
(7,0.7)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.0)

SUBGRAPH
(1,0.7)

PREDICT1-SVM

(7,0.7)
PREDICTDNN

(10,0.7)
RINGMS

(1,0.0)

RING-MLDNN

(1,0.7)

RING-ML1-SVM

(7,0.7)

K-REFINE
(10,1,0,0)

IPFP
(10,1,0,0)

IBP-BEAM
(10,1,0,0)

BP-BEAM
(40,1,0,0)

F1

F2

COMPACT-MIP

ADJ-IP

SA

Fig. 23 Transitive reduction of dominance graph for upper bounds on the dataset LETTER (H).

36 David B. Blumenthal et al.

STAR (1,0.0)(
t in s dUB cUB sUB

2.00 ·10−5 3.46 0.1 0.70

)

STAR (4,0.0)(
t in s dUB cUB sUB

5.30 ·10−5 3.41 0.1 0.64

)

STAR (7,0.0)(
t in s dUB cUB sUB

8.10 ·10−5 3.36 0.09 0.60

)

STAR (10,0.0)(
t in s dUB cUB sUB

1.14 ·10−4 3.33 0.09 0.60

)

STAR (1,0.7)(
t in s dUB cUB sUB

2.80 ·10−5 3.43 0.1 0.67

)

STAR (4,0.7)(
t in s dUB cUB sUB

9.90 ·10−5 3.38 0.1 0.63

)

STAR (10,0.7)(
t in s dUB cUB sUB

2.04 ·10−4 3.32 0.1 0.62

)

NODE (1,0.0)(
t in s dUB cUB sUB

6.00 ·10−6 3.58 0.1 0.92

)t?UB

NODE (1,0.7)(
t in s dUB cUB sUB

1.10 ·10−5 3.53 0.1 0.78

)

BRANCH-FAST (1,0.0)(
t in s dUB cUB sUB

2.60 ·10−5 3.41 0.09 0.65

)

BRANCH-FAST (1,0.7)(
t in s dUB cUB sUB

3.20 ·10−5 3.37 0.09 0.64

)

RINGMS (1,0.0)(
t in s dUB cUB sUB

4.80 ·10−5 3.42 0.1 0.64

)

REFINE (1,1,0,0)(
t in s dUB cUB sUB

2.93 ·10−4 3.2 0.1 0.63

)

REFINE (10,1,0,0)(
t in s dUB cUB sUB

1.14 ·10−3 3.1 0.1 0.64

)

REFINE (20,1,0,0)(
t in s dUB cUB sUB

1.95 ·10−3 3.09 0.11 0.67

)c?UB

IPFP (40,1,0,0)(
t in s dUB cUB sUB

1.63 ·10−2 3.08 0.11 0.67

)d?
UB

c?UB

BP-BEAM (1,1,0,0)(
t in s dUB cUB sUB

2.33 ·10−4 3.3 0.09 0.59

)

BP-BEAM (10,1,0,0)(
t in s dUB cUB sUB

1.06 ·10−3 3.17 0.1 0.63

)

BP
(1,0.0)

BRANCH-CONST
(1,0.0)

WALKS
(1,0.7)

BRANCH
(1,0.7)

SUBGRAPH
(10,0.7)

PREDICTDNN

(1,0.7)

PREDICT1-SVM

(10,0.7)

RINGOPT

(1,0.7)

RING-MLDNN

(7,0.7)

RING-ML1-SVM

(10,0.7)

K-REFINE
(20,1,0,0)

IBP-BEAM
(40,0.5,1,0)

BP-BEAM
(40,0.125,7,1)

F1

F2

COMPACT-MIP

ADJ-IP

SA

BRANCH-TIGHT

Fig. 24 Transitive reduction of dominance graph for upper bounds on the dataset FP.

Comparing heuristics for graph edit distance computation 37

NODE (1,0.0)(
t in s dUB cUB sUB

1.20 ·10−5 88.25 0.12 0.89

)t?UB

NODE (4,0.0)(
t in s dUB cUB sUB

1.26 ·10−4 87.19 0.12 0.59

)

NODE (7,0.0)(
t in s dUB cUB sUB

2.14 ·10−4 86.63 0.12 0.58

)

NODE (1,0.7)(
t in s dUB cUB sUB

2.90 ·10−5 87.74 0.12 0.69

)

RINGMS (1,0.0)(
t in s dUB cUB sUB

2.30 ·10−4 85.96 0.12 0.58

)

RINGMS (7,0.0)(
t in s dUB cUB sUB

5.65 ·10−4 85.57 0.12 0.57

)

RINGMS (10,0.0)(
t in s dUB cUB sUB

6.53 ·10−4 85.54 0.12 0.57

)

RINGMS (1,0.7)(
t in s dUB cUB sUB

2.53 ·10−4 85.59 0.12 0.58

)

RINGMS (4,0.7)(
t in s dUB cUB sUB

7.20 ·10−4 85.33 0.12 0.57

)

RINGMS (7,0.7)(
t in s dUB cUB sUB

8.51 ·10−4 85.28 0.12 0.57

)

RINGMS (10,0.7)(
t in s dUB cUB sUB

1.09 ·10−3 85.25 0.12 0.57

)

REFINE (1,1,0,0)(
t in s dUB cUB sUB

6.44 ·10−3 80.57 0.13 0.60

)

REFINE (10,1,0,0)(
t in s dUB cUB sUB

2.47 ·10−2 78.2 0.14 0.64

)

REFINE (20,1,0,0)(
t in s dUB cUB sUB

4.53 ·10−2 77.77 0.14 0.64

)

IPFP (1,1,0,0)(
t in s dUB cUB sUB

1.86 ·10−2 78.71 0.14 0.63

)

IPFP (10,1,0,0)(
t in s dUB cUB sUB

5.81 ·10−2 76.81 0.14 0.64

)

IPFP (20,1,0,0)(
t in s dUB cUB sUB

9.47 ·10−2 76.55 0.14 0.64

)

IPFP (30,1,0,0)(
t in s dUB cUB sUB

1.32 ·10−1 76.45 0.14 0.64

)

IPFP (40,1,0,0)(
t in s dUB cUB sUB

1.67 ·10−1 76.37 0.14 0.64

)

IPFP (40,0.5,1,1)(
t in s dUB cUB sUB

2.14 ·10−1 76.26 0.15 0.67

)c?UB

IPFP (40,0.25,3,0)(
t in s dUB cUB sUB

2.69 ·10−1 76.21 0.15 0.67

)c?UB

IPFP (40,0.25,3,1)(
t in s dUB cUB sUB

2.70 ·10−1 76.2 0.15 0.67

)c?UB

IPFP (40,0.125,7,1)(
t in s dUB cUB sUB

3.69 ·10−1 76.18 0.15 0.67

)d?
UB

c?UB

BP-BEAM (10,1,0,0)(
t in s dUB cUB sUB

4.92 ·10−3 82.53 0.13 0.60

)

BP
(1,0.7)

STAR
(1,0.0)

BRANCH-CONST
(1,0.0)

WALKS
(10,0.7)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.7)

SUBGRAPH
(10,0.7)

PREDICTDNN

(1,0.7)

PREDICT1-SVM

(10,0.7)

RINGOPT

(10,0.7)

RING-MLDNN

(10,0.7)

RING-ML1-SVM

(10,0.7)

REFINE
(40,0.125,7,0)

K-REFINE
(40,0.125,7,1)

BP-BEAM
(40,0.125,7,0)

IBP-BEAM
(40,0.125,7,1)

F1

F2

COMPACT-MIP

ADJ-IP

SA

BRANCH-TIGHT

Fig. 25 Transitive reduction of dominance graph for upper bounds on the dataset AIDS.

38 David B. Blumenthal et al.

BRANCH-CONST (1,0.7)(
t in s dUB cUB sUB

1.01 ·10−4 118.16 0.01 0.68

)c?UB

NODE (1,0.0)(
t in s dUB cUB sUB

2.00 ·10−5 118.91 0.01 0.94

)t?UB
c?UB

NODE (7,0.0)(
t in s dUB cUB sUB

3.85 ·10−4 117.72 0.01 0.63

)c?UB

NODE (10,0.0)(
t in s dUB cUB sUB

5.41 ·10−4 117.34 0.01 0.62

)c?UB

NODE (1,0.7)(
t in s dUB cUB sUB

5.10 ·10−5 118.4 0.01 0.74

)c?UB

RINGMS (1,0.0)(
t in s dUB cUB sUB

5.87 ·10−4 113.55 0.01 0.63

)c?UB

RINGMS (1,0.7)(
t in s dUB cUB sUB

6.24 ·10−4 112.77 0.01 0.63

)c?UB

RINGMS (4,0.7)(
t in s dUB cUB sUB

2.47 ·10−3 112.36 0.01 0.63

)c?UB

RINGMS (7,0.7)(
t in s dUB cUB sUB

3.10 ·10−3 112.24 0.01 0.63

)c?UB

RINGMS (10,0.7)(
t in s dUB cUB sUB

3.51 ·10−3 112.18 0.01 0.63

)c?UB

REFINE (1,1,0,0)(
t in s dUB cUB sUB

1.82 ·10−2 105.58 0.0 0.31

)

REFINE (10,1,0,0)(
t in s dUB cUB sUB

7.40 ·10−2 101.92 0.01 0.65

)c?UB

REFINE (20,1,0,0)(
t in s dUB cUB sUB

1.37 ·10−1 101.19 0.01 0.66

)c?UB

IPFP (1,1,0,0)(
t in s dUB cUB sUB

4.68 ·10−2 102.03 0.0 0.32

)

IPFP (10,1,0,0)(
t in s dUB cUB sUB

1.47 ·10−1 99.21 0.01 0.66

)c?UB

IPFP (20,1,0,0)(
t in s dUB cUB sUB

2.48 ·10−1 98.74 0.01 0.66

)c?UB

IPFP (30,1,0,0)(
t in s dUB cUB sUB

3.44 ·10−1 98.53 0.01 0.66

)c?UB

IPFP (40,1,0,0)(
t in s dUB cUB sUB

4.41 ·10−1 98.39 0.01 0.67

)c?UB

IPFP (40,0.5,1,1)(
t in s dUB cUB sUB

5.66 ·10−1 98.11 0.01 0.67

)c?UB

IPFP (40,0.25,3,0)(
t in s dUB cUB sUB

7.26 ·10−1 97.98 0.01 0.67

)c?UB

IPFP (40,0.125,7,1)(
t in s dUB cUB sUB
1.01 97.9 0.01 0.67

)d?
UB

c?UB

BP-BEAM (10,1,0,0)(
t in s dUB cUB sUB

1.55 ·10−2 110.76 0.0 0.30

)

BP
(1,0.0)

STAR
(1,0.0)

BRANCH-CONST
(1,0.0)

WALKS
(10,0.0)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.7)

SUBGRAPH
(10,0.7)

PREDICTDNN

(7,0.0)

PREDICT1-SVM

(10,0.7)

RINGOPT

(10,0.7)

RING-MLDNN

(10,0.7)
RING-ML1-SVM

(10,0.7)

REFINE
(40,0.125,7,1)

K-REFINE
(40,0.125,7,1)

BP-BEAM
(40,0.125,7,0)

IBP-BEAM
(40,0.125,7,1)

F1

F2

COMPACT-MIP

ADJ-IP

SA

BRANCH-TIGHT

Fig. 26 Transitive reduction of dominance graph for upper bounds on the dataset MUTA.

Comparing heuristics for graph edit distance computation 39

BRANCH-CONST (4,0.0)(
t in s dUB cUB sUB

1.53 ·10−4 933.06 0.34 0.73

)

BRANCH-CONST (7,0.0)(
t in s dUB cUB sUB

2.06 ·10−4 929.97 0.34 0.71

)

BRANCH-CONST (10,0.0)(
t in s dUB cUB sUB

2.69 ·10−4 928.34 0.34 0.69

)

BRANCH-CONST (1,0.7)(
t in s dUB cUB sUB

7.30 ·10−5 936.55 0.34 0.81

)

BRANCH-CONST (7,0.7)(
t in s dUB cUB sUB

3.65 ·10−4 927.54 0.34 0.68

)

BRANCH-CONST (10,0.7)(
t in s dUB cUB sUB

4.84 ·10−4 926.23 0.34 0.67

)

NODE (1,0.0)(
t in s dUB cUB sUB

3.60 ·10−5 945.25 0.34 0.98

)t?UB

NODE (1,0.7)(
t in s dUB cUB sUB

5.00 ·10−5 939.67 0.34 0.88

)

BRANCH-FAST (1,0.7)(
t in s dUB cUB sUB

1.01 ·10−4 936.54 0.34 0.76

)

BRANCH (10,0.0)(
t in s dUB cUB sUB

3.64 ·10−4 928.33 0.34 0.68

)

BRANCH (7,0.7)(
t in s dUB cUB sUB

4.68 ·10−4 927.53 0.34 0.67

)

BRANCH (10,0.7)(
t in s dUB cUB sUB

5.88 ·10−4 926.22 0.34 0.67

)

IPFP (1,1,0,0)(
t in s dUB cUB sUB

2.73 ·10−3 908.59 0.35 0.67

)c?UB

IPFP (10,1,0,0)(
t in s dUB cUB sUB

7.92 ·10−3 904.92 0.35 0.67

)c?UB

IPFP (20,1,0,0)(
t in s dUB cUB sUB

1.29 ·10−2 904.78 0.35 0.67

)c?UB

IPFP (30,1,0,0)(
t in s dUB cUB sUB

1.77 ·10−2 904.73 0.35 0.67

)c?UB

IPFP (40,1,0,0)(
t in s dUB cUB sUB

2.22 ·10−2 904.72 0.35 0.67

)c?UB

IPFP (40,0.5,1,1)(
t in s dUB cUB sUB

2.71 ·10−2 904.7 0.35 0.67

)d?
UB

c?UB

BP
(1,0.0)

STAR
(1,0.0)BRANCH-CONST

(1,0.0)

WALKS
(10,0.7)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.0)

SUBGRAPH
(7,0.7)

PREDICTDNN

(7,0.7)

PREDICT1-SVM

(7,0.7)

RINGMS

(1,0.0)

RINGOPT

(7,0.0)

RING-MLDNN

(7,0.7)

RING-ML1-SVM

(7,0.7)

REFINE
(20,1,0,0)

K-REFINE
(40,0.5,1,1)

BP-BEAM
(40,0.125,7,1)

IBP-BEAM
(40,0.125,7,1)

F1

F2

COMPACT-MIP

ADJ-IP

SA

BRANCH-TIGHT

Fig. 27 Transitive reduction of dominance graph for upper bounds on the dataset GREC.

40 David B. Blumenthal et al.

BRANCH-CONST (1,0.0)(
t in s dUB cUB sUB

1.35 ·10−4 312.65 0.04 0.75

)c?UB

BRANCH-CONST (4,0.0)(
t in s dUB cUB sUB

5.64 ·10−4 312.32 0.04 0.68

)c?UB

BRANCH-CONST (7,0.0)(
t in s dUB cUB sUB

8.68 ·10−4 312.17 0.04 0.68

)c?UB

BRANCH-CONST (10,0.0)(
t in s dUB cUB sUB

1.26 ·10−3 312.08 0.04 0.67

)c?UB

BRANCH-CONST (1,0.7)(
t in s dUB cUB sUB

1.81 ·10−4 312.39 0.04 0.73

)c?UB

BRANCH-CONST (4,0.7)(
t in s dUB cUB sUB

1.08 ·10−3 312.16 0.04 0.67

)c?UB

BRANCH-CONST (7,0.7)(
t in s dUB cUB sUB

1.53 ·10−3 312.06 0.04 0.67

)c?UB

BRANCH-CONST (10,0.7)(
t in s dUB cUB sUB

1.99 ·10−3 312.0 0.04 0.67

)c?UB

NODE (1,0.0)(
t in s dUB cUB sUB

3.50 ·10−5 313.1 0.04 0.99

)t?UB
c?UB

NODE (1,0.7)(
t in s dUB cUB sUB

6.50 ·10−5 312.74 0.04 0.84

)c?UB

BRANCH (10,0.0)(
t in s dUB cUB sUB

1.74 ·10−3 312.05 0.04 0.67

)c?UB

BRANCH (10,0.7)(
t in s dUB cUB sUB

2.85 ·10−3 311.95 0.04 0.67

)c?UB

REFINE (1,1,0,0)(
t in s dUB cUB sUB

2.56 ·10−2 310.03 0.04 0.66

)c?UB

IPFP (1,1,0,0)(
t in s dUB cUB sUB

3.01 ·10−2 308.69 0.04 0.67

)c?UB

IPFP (10,1,0,0)(
t in s dUB cUB sUB

8.09 ·10−2 307.94 0.04 0.67

)c?UB

IPFP (20,1,0,0)(
t in s dUB cUB sUB

1.41 ·10−1 307.83 0.04 0.67

)c?UB

IPFP (30,1,0,0)(
t in s dUB cUB sUB

2.05 ·10−1 307.78 0.04 0.67

)c?UB

IPFP (40,1,0,0)(
t in s dUB cUB sUB

2.63 ·10−1 307.75 0.04 0.67

)c?UB

IPFP (40,0.5,1,1)(
t in s dUB cUB sUB

2.91 ·10−1 307.7 0.04 0.67

)c?UB

IPFP (40,0.25,3,0)(
t in s dUB cUB sUB

3.31 ·10−1 307.67 0.04 0.67

)c?UB

IPFP (40,0.125,7,0)(
t in s dUB cUB sUB

4.30 ·10−1 307.65 0.04 0.67

)d?
UB

c?UB

IPFP (40,0.125,7,1)(
t in s dUB cUB sUB

4.30 ·10−1 307.66 0.04 0.67

)c?UB

BP
(1,0.0)

STAR
(1,0.0)

WALKS
(10,0.7)

BRANCH-FAST
(1,0.0)

BRANCH
(1,0.0)

SUBGRAPH
(7,0.0)

PREDICTDNN

(1,0.7)

PREDICT1-SVM

(10,0.7)

RINGMS

(1,0.0)

RINGOPT

(1,0.7)

RING-MLDNN

(10,0.7)

RING-ML1-SVM

(10,0.7)

REFINE
(40,0.125,7,0)

K-REFINE
(40,0.125,7,0)

BP-BEAM
(40,0.125,7,0)

IBP-BEAM
(40,0.125,7,1)

F1

F2

COMPACT-MIP

ADJ-IP

SA

BRANCH-TIGHT

Fig. 28 Transitive reduction of dominance graph for upper bounds on the dataset PROTEIN.

	Introduction
	Related work
	Preliminaries
	Overview of compared heuristics
	Heuristics based on transformations to the linear sum assignment problem with error-correction
	Heuristics based on linear programming
	Heuristics based on local search
	Miscellaneous heuristics
	Experimental evaluation
	Conclusions and future work
	Datasets and edit cost functions
	Visualization of experiments via dominance graphs

