
Ring Based Approximation of Graph Edit
Distance

David B. Blumenthal1, Sébastien Bougleux2, Johann Gamper1, and Luc Brun2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
david.blumenthal@inf.unibz.it, gamper@inf.unibz.it

2 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
bougleux@unicaen.fr, luc.brun@ensicaen.fr

Presented at the IAPR Joint International Workshops on Statistical Techniques in
Pattern Recognition and Structural and Syntactic Pattern Recongnition

S+SSPR, Beijing, China, August 2018 (http://ssspr2018.buaa.edu.cn/)

LNCS 11004, p. 293–303, Springer, Cham (http://doi.org/10.1007/978-3-319-97785-0_28)

Abstract. The graph edit distance (GED) is a flexible graph dissimilar-
ity measure widely used within the structural pattern recognition field.
A widely used paradigm for approximating GED is to define local struc-
tures rooted at the nodes of the input graphs and use these structures to
transform the problem of computing GED into a linear sum assignment
problem with error correction (LSAPE). In the literature, different lo-
cal structures such as incident edges, walks of fixed length, and induced
subgraphs of fixed radius have been proposed. In this paper, we propose
to use rings as local structure, which are defined as collections of nodes
and edges at fixed distances from the root node. We empirically show
that this allows us to quickly compute a tight approximation of GED.

Keywords: Graph Edit Distance · Graph Matching · Upper Bounds.

1 Introduction

Due to the flexibility and expressiveness of labeled graphs, graph representations
of objects such as molecules and shapes are widely used for addressing pattern
recognition problems. For this, a graph (dis-)similarity measure has to be de-
fined. A widely used measure is the graph edit distance (GED), which equals the
minimum cost of a sequence of edit operations transforming one graph into an-
other. As exactly computing GED is NP -hard [17], research has mainly focused
on the design of approximative heuristics that quickly compute upper bounds
for GED. The development of such heuristics was particularly triggered by the
introduction of the paradigm LSAPE-GED, which transforms GED to the linear
sum assignment problem with error correction (LSAPE) [10,17]. LSAPE extends
the linear sum assignment problem by allowing rows and columns to be not only
substituted, but also deleted and inserted. LSAPE-GED works as follows: In a first
step, the graphs G and H are decomposed into local structures rooted at their
nodes. Next, a distance measure between these local structures is defined. This
measure is used to populate an instance of LSAPE, whose rows and columns cor-
respond to the nodes of G and H, respectively. Finally, the constructed LSAPE

2 D. B. Blumenthal et al.

instance is solved. The computed solution is interpreted as a sequence of edit
operations, whose cost is returned as an upper bound for GED(G,H).

The original instantiations BP [10] and STAR [17] of LSAPE-GED define the
local structure of a node as, respectively, the set of its incident edges and the set
of its incident edges together with the terminal nodes. Since then, further instan-
tiations have been proposed. Like BP, the algorithms BRANCH-UNI [18], BRANCH,
and BRANCH-FAST [2] use the incident edges as local structures. They differ from
BP in that they use distance measures for the local structures that also allow to
derive lower bounds for GED. In contrast to that, the algorithms SUBGRAPH [6]
and WALKS [8] define larger local structures. Given a constant L, SUBGRAPH de-
fines the local structure of a node u as the subgraph which is induced by the
set of nodes that are within distance L from u, while WALKS defines it as the set
of walks of length L starting at u. SUBGRAPH uses GED as the distance measure
between its local structures and hence runs in polynomial time only if the in-
put graphs have constantly bounded maximum degrees. Not all instantiations
of LSAPE-GED are designed for general edit costs: STAR and BRANCH-UNI expect
the edit costs to be uniform, and WALKS assumes that the costs of all edit opera-
tion types are constant. As an extension of LSAPE-GED, it has been suggested to
define node centrality measures, transform the LSAPE instance constructed by
any instantiation of LSAPE-GED such that assigning central to non-central nodes
is penalized, and return the minimum of the edit costs induced by solutions to
the original and the transformed instances as an upper bound for GED [12,16].

Not all heuristics for GED follow the paradigm LSAPE-GED. Most notably,
some methods use variants of local search to improve a previously computed up-
per bound [4,7,11,14]. These methods yield tighter upper bounds than LSAPE-GED

instantiations at the price of a significantly increased runtime, and use LSAPE-GED
instantiations for initialization. They are thus no competitors of LSAPE-GED in-
stantiations and will hence not be considered any further in this paper.

In this paper, we propose a new instantiation RING of LSAPE-GED that is
similar to SUBGRAPH and WALKS in that it also uses local structures whose sizes are
bounded by a constant L— namely, rings. Intuitively, the ring rooted at a node
u is a collection of disjoint sets of nodes and edges which are within distances
l < L from u. Experiments show that RING yields the tightest upper bound of
all instantiations of LSAPE-GED. The advantage of rings w. r. t. subgraphs is that
ring distances can be computed in polynomially. The advantage w. r. t. walks is
that rings can model general edit costs, avoid redundancies due to multiple node
or edges inclusions, and allow to define a fine-grained distance measure between
the local structures. The rest of the paper is organized as follows: In Section 2,
important concepts are introduced. In Section 3, RING is presented. In Section 4,
the experimental results are summarized. Section 5 concludes the paper.

2 Preliminaries

In this paper, we consider undirected labeled graphs G = (V G, EG, `GV , `
G
E) where

V G and EG are sets of nodes and edges, and `GV : V G → ΣV , `GE : EG → ΣE are

Ring Based Approximation of Graph Edit Distance 3

Table 1. Edit operations and edit costs for transforming a graph G into a graph H.

Edit Operation Edit Cost Short Notation

substitute node u ∈ V G by node v ∈ V H cV (`GV (u), `HV (u)) cV (u, v)
delete isolated node u ∈ V G from V G cV (`GV (u), ε) cV (u, ε)
insert isolated node v into V H cV (ε, `HV (u)) cV (ε, v)
substitute edge e ∈ EG by edge f ∈ EH cE(`GE(e), `HE (f)) cE(e, f)
delete edge e ∈ EG from EG cE(`GE(e), ε) cE(e, ε)
insert edge f into EH cE(ε, `HE (f)) cE(ε, f)

labeling functions. Furthermore, we are given non-negative edit cost functions
cV : ΣV ∪ {ε} ×ΣV ∪ {ε} → R≥0 and cE : ΣE ∪ {ε} ×ΣE ∪ {ε} → R≥0, where
ε is a special label reserved for dummy nodes and edges, and the equations
cV (α, α) = 0 and cE(β, β) = 0 hold for all α ∈ ΣV ∪ {ε} and all β ∈ ΣE ∪ {ε}.
An edit path P between graphs G and H is a sequence of edit operations with
non-negative edit costs defined in terms of cV and cE (Table 1) that transform
G into H. Its cost c(P) is defined as the sum over the costs of its edit operations.

Definition 1 (GED). The graph edit distance between graphs G and H is de-
fined as GED(G,H) = minP∈Ψ(G,H) c(P), where Ψ(G,H) is the set of all edit
paths between G and H.

The key insight behind the paradigm LSAPE-GED is that a complete set of
node edit operations — i. e., a set of node edit operations that specifies for each
node of the input graphs whether is has to be substituted, inserted, or deleted —
can be extended to an edit path, whose edit cost is an upper bound for GED [3,
4,17]. For constructing a set of node operations that induces a cheap edit path,
a suitably defined instance of LSAPE is solved. LSAPE is defined as follows [5]:

Definition 2 (LSAPE). Given a matrix C = (ci,k) ∈ R(n+1)×(m+1)
≥0 with

cn+1,m+1 = 0, LSAPE consists in the task to compute an assignment π? ∈
arg minπ∈Πn,m

C(π). Πn,m is the set of assignments of rows of C to columns
of C such that each row except for n + 1 and each column except for m + 1 is
covered exactly once, and C(π) =

∑n+1
i=1

∑
k∈π[i] ci,k.

Instantiations of LSAPE-GED construct a LSAPE instance C of size (|V G| +
1)× (|V H |+1), such that the rows and columns of C correspond to the nodes of
G and H plus one dummy node used for representing insertions and deletions. A
feasible solution for C can hence be interpreted as a complete set of node edit op-
erations, which induces an upper bound for GED. An optimal solution for C can
be found in O(min{n,m}2 max{n,m}) time [5]; greedy suboptimal solvers run in
in O(nm) time [13]. For populating C, instantiations of LSAPE-GED associate the
nodes ui ∈ V G and vk ∈ V H with local structures SG(ui) and SH(vk), and then
construct C by setting ci,k = dS(SG(ui),SH(vk)), ci,|V H |+1 = dS(SG(ui),S(ε)),

and c|V G|+1,k = dS(S(ε),SH(vk)), where dS is a distance measure for the local
structures and S(ε) is a special local structure assigned to dummy nodes.

4 D. B. Blumenthal et al.

3 Ring Based Upper Bounds for GED

3.1 Definition of Ring Structures and Ring Distances

Let ui, uj ∈ V G be two nodes in G. The distance dGV (ui, uj) between the nodes
ui and uj is defined as the number of edges of a shortest path connecting them
or as ∞ if they are in different connected components of G. The eccentricitiy
of a node ui ∈ V G and the diameter of a graph G are defined as eGV (ui) =
maxuj∈V G dGV (ui, uj) and diam(G) = maxu∈V G eGV (u), respectively.

Definition 3 (Ring, Layer, Outer Edges, Inner Edges). Given a constant
L ∈ N>0 and a node ui ∈ V G, we define the ring rooted at ui in G as the sequence
of disjoint layers RGL (ui) = (LGl (ui))

L−1
l=0 (Figure 1). The lth layer rooted at ui

is defined as LGl (ui) = (VG
l (ui),OEG

l (ui), IEG
l (ui)) where:

– VG
l (ui) = {uj ∈ V G | dGV (ui, uj) = l} is the set of nodes at distance l of ui,

– IEG
l (ui) = EG∩

(
VG
l (ui)×VG

l (ui)
)

is the set of inner edges connecting two
nodes in the lth layer, and

– OEG
l (ui) = EG ∩

(
VG
l (ui)×VG

l+1(ui)
)

is the set of outer edges connecting

a node in the lth layer to a node in the (l + 1)th layer.

For the dummy node ε, we define RL(ε) = ((∅, ∅, ∅)l)L−1l=0 .

uiRG
3 (ui)

LG
0 (ui)

LG
1 (ui)

LG
2 (ui)

Fig. 1. Visualization of Definition 3. Inner edges are dashed, outer edges are solid.

Remark 1 (Properties of Rings and Layers). The first layer LG0 (ui) of a node ui
corresponds to ui’s local structure as defined by BP, BRANCH, BRANCH-FAST, and
BRANCH-UNI. We have OEG

l (ui) = ∅ just in case l > eGV (ui) − 1 and LGl (ui) =

(∅, ∅, ∅) just in case l > eGV (ui). Moreover, the identities EG =
⋃L−1
l=0 (OEG

l (ui)∪
IEG

l (ui)) and V G =
⋃L−1
l=0 VG

l (ui) hold for all ui ∈ V G just in case L > diam(G).

In our instantiation RING of LSAPE-GED, we use rings as local structures,
i. e., define SG(ui) = RGL (ui). The next step is to define a distance measure
dR that maps two rings to a non-negative real number. For doing so, we first
define a measure dL that returns the distance between two layers. So let LGl (u)
and LHl (v) be the lth layers rooted at nodes u ∈ V G ∪ {ε} and v ∈ V H ∪ {ε},
respectively. Then dL is defined as

dL
(
LGl (u),LHl (v)

)
= α0φV

(
V Gl (u), V Hl (v)

)
+ α1φE

(
OEG

l (u),OEH
l (v)

)
+ α2φE

(
IEG

l (u), IEH
l (v)

)
,

Ring Based Approximation of Graph Edit Distance 5

where φV : P(V G) × P(V H) → R≥0 and φE : P(EG) × P(EH) → R≥0 are
functions that measures the dissimilarity between two sets of nodes and edges,
respectively, and α0, α1, α2 ∈ R≥0 are weights assigned to the dissimilarities
between the nodes, the outer edges, and the inner edges. We now define dR as

dR
(
RGL (u),RHL (v)

)
=

L−1∑
l=0

λldL
(
LGl (u),LHl (v)

)
, (1)

where λl ∈ R≥0 are weights assigned to the distances between the layers.
Recall that we are defining dR to the purpose of populating a LSAPE instance

C which is then used to derive an upper bound for GED. Since we want this
upper bound to be as tight as possible, we want dR

(
RGL (u),RHL (v)

)
to be small

if and only if we have good reasons to assume that substituting u by v leads to
a small overall edit cost. This can be achieved by defining the functions φV and
φE in a way that makes crucial use of the edit cost functions cV and cE :

LSAPE Based Definition of φV and φE. Let U = {u1, . . . , ur} ⊆ V G

and V = {v1, . . . , us} ⊆ V H be two node sets. Then a LSAPE instance C =
(ci,k) ∈ R(r+1)×(s+1) is defined by setting ci,k = cV (ui, vk), ci,s+1 = cV (i, ε), and
cr+1,k = cV (ε, vk) for all i ∈ {1, . . . , r} and all k ∈ {1, . . . , s}. This instance is
solved — either optimally in O(min{r, s}2 max{r, s}) time or greedily in O(rs)
time — and φV is defined to return C(π?)/max{|U |, |V |, 1}, where C(π?) is the
cost of the computed solution π?. We normalize by the sizes of U and V in order
not to overrepresent large layers. The function φE can be defined analogously.

Multiset Intersection Based Definition of φV and φE. Alternatively, we
suggest to define φV as

φV (U, V) =
[
cU,εV δ|U |≥|V |(|U | − |V |) + cε,VV (1− δ|U |≥|V |)(|V | − |U |)

+ cU,VV
(
min{|U |, |V |} − |`GV [[U]] ∩ `HV [[V]]|

)]
/max{|U |, |V |, 1},

where δ|U |≥|V | equals 1 if |U | ≥ |V | and 0 otherwise, cU,εV , cε,VV , and cU,VV are the
average costs of deleting a node in U , inserting a node in V , and substituting
a node in U by a differently labeled node in V , and `GV [[U]] and `HV [[V]] are the
multiset images of U and V under the labelling functions `GV and `HV . Again, φE
can be defined analogously. Note that, if the edit costs are quasimetric, then the
LSAPE based definition of φV and φE given above leads to the same number of
node or edge substitutions, insertions, or deletions as the multiset intersection
based definition; and if all substitution, insertion, and deletion costs are the
same, then the two definitions are equivalent (cf. Proposition 1). Therefore, the
multiset intersection based approach for defining φV and φE can be seen as a
proxy for the one based on LSAPE. The advantage of using multiset intersection
is that it allows for a very quick evaluation of φV and φE . In fact, since multiset
intersections can be computed in quasilinear time [17], the dominant operation is
the computation of the average substitution cost, which requires quadratic time.
The drawback is that we loose some of the information encoded in the layers.

6 D. B. Blumenthal et al.

Proposition 1. If all node substitution costs are equal to a constant cSV , all
node removal costs to cRV , and all node insertion costs to cIV with cSV ≤ cRV + cIV ,
then both definitions of φV coincide. For φE, an analogous proposition holds.

Proof. We assume w. l. o. g. that |U | ≤ |V |. Then, from cSV ≤ cRV + cIV and by [5],
Proposition 1, the optimal solution π∗ does not contain removals and contains
exactly |V | − |U | insertions. The optimal cost C(π∗) is thus reduced to the cost
of |V | − |U | insertions plus cSV times the number of non identical substitutions.
This last quantity is provided by min{|U |, |V |}− lGV [[U]]∩ lHV [[V]]. We thus have:

C(π∗) = cIV (|V | − |U |) + cSV
(
min{|U |, |V |} − lGV [[U]] ∩ lHV [[V]]

)
Since costs are constant, we have cU,εV = cRV , c

U,V
V = cSV , and cε,VV = cIV , which

provides the expected result. The proof for φE is analogous. ut

3.2 Algorithms and Choice of Meta-Parameters

Construction of the Rings and Overall Runtime Complexity. Figure 2
shows how to build the rings via breadth-first search. Clearly, constructing all
rings of a graph G requires O(|V G|(|V G| + |EG|)) time. After constructing the
rings, the LSAPE instance C must be populated. Depending on the choice of
φV and φE , this requires O(| supp(λ)||V G||V H |Ω3) or O(| supp(λ)||V G||V H |Ω2)
time, where Ω is the size of the largest set contained in one of the rings of
G and H, and supp(λ) is the support of λ. Finally, C is solved optimally in
O(min{|V G|, |V H |}2 max{|V G|, |V H |}) time or greedily in O(|V G||V H |) time.

Choice of the Meta-Parameters α, λ, and L. When introducing dL and
dR in Section 3.1, we allowed α and λ to be arbitrary vectors from R3

≥0 and RL≥0.
However, we can be more restrictive: Since LSAPE does not care about scaling,
we can assume w. l. o. g. that α and λ are simplex vectors, i. e., that we have∑2
s=0 αs =

∑L−1
l=0 λl = 1. This reduces the search space for α and λ but still

leaves us with too many degrees of freedom for choosing them via grid search. We
hence suggest to learn α and λ with the help of a blackbox optimizer [15]. For
a training set of graphs T and a fixed L ∈ N>0, the optimizer should minimize

obj (α,λ) =

[
µ+ (1− µ)

(
| supp(λ)| − 1

max{1, L− 1}

)] ∑
(G,H)∈T 2

RING
φV ,φE

α,λ (G,H)

and respect the constraints that α and λ are simplex vectors. RINGφV ,φE

α,λ (G,H)
is the upper bound for GED(G,H) returned by RING given fixed α, λ, φV , and
φE , and µ ∈ [0, 1] is a tuning parameter that should be close to 1 if one wants to
optimize for tightness and close to 0 if one wants to optimize for runtime. We in-
clude | supp(λ)|−1 in the objective, because if λ’s support is small, only few layer
distances have to be computed (cf. Equation (1)). In particular, | supp(λ)| = 1
means that RING’s runtime cannot be decreased any further via modification of
λ, which is why, in this case, the (1− µ)-part of the objective is set to 0.

Ring Based Approximation of Graph Edit Distance 7

Input: A graph G, a node u ∈ V G, and a constant L ∈ N>0.
Output: The ring RG

L (u) rooted at u.

l← 0; V ← ∅; OE ← ∅; IE ← ∅; RG
L (u)← ((∅, ∅, ∅)l)L−1

l=0 ; // initialize ring

d[u]← 0; for u′ ∈ V G \ {u} do d[u′]←∞; // initialize distances to root

for e ∈ EG do discovered[e]← false; // mark all edges as undiscovered
open← {u}; // initialize FIFO queue
while open 6= ∅ do // main loop

u′ ← open.pop(); // pop node from queue

if d[u′] > l then // the lth layer is complete

RG
L (u)l = (V ,OE , IE); l← l + 1 ; // store lth layer and increment l

V ← ∅; OE ← ∅; IE ← ∅; // reset nodes, inner, and outer edges

V ← V ∪ {u′}; // u′ is node at lth layer

for u′u′′ ∈ EG do // iterate through neighbours of u′

if discovered[u′u′′] then continue; // skip discovered edges
if d[u′′] =∞ then // found new node

d[u′′]← l + 1; // set distance of new node
if d[u′′] < L then open.push(u′′); // add close new node to queue

if d[u′′] = l then IE ← IE ∪ {u′u′′}; // u′u′′ is inner edge at lth layer

else OE ← OE ∪ {u′u′′}; // u′u′′ is outer edge at lth layer
discovered[u′u′′]← true; // mark u′u′′ as discovered

RG
L (u)l = (V ,OE , IE); return RG

L (u); // store last layer and return ring

Fig. 2. Construction of rings via Breadth-First Search.

Before building the rings for the graphs contained in the training set, L should
be set to an upper bound for their diameters, e. g., to L = 1+maxG∈T |V G|. After
the rings have been build, L can be lowered to L = 1+max{l | ∃G ∈ T , u ∈ V G :
RGL (u)l 6= (∅, ∅, ∅)} = 1 + maxG∈T diam(G) (cf. Remark 1). In the next step, the
blackbox optimizer should be run, which returns an optimized pair of parameter
vectors (α?,λ?). As the lth layers contribute to dR only if l ∈ supp(λ?) (cf.
equation (1)), L can then be further lowered to L = 1 + maxl∈supp(λ?) l.

4 Empirical Evaluation

We tested on the datasets MAO, PAH, ALKANE, and ACYCLIC, which
contain graphs representing chemical compounds. For all datasets, we used the
(non-uniform) edit costs 1 defined in [1], Table 2. We tested three variants of our
method: RINGOPT uses optimal LSAPE for defining the distance functions φV and
φE , RINGGD uses greedy LSAPE, and RINGMS uses the multiset intersection based
approach. We compared them to instantiations of LSAPE-GED that can cope
with non-uniform edit costs: BP, BRANCH, BRANCH-FAST, SUBGRAPH, and WALKS.
As WALKS assumes that the costs of all edit operation types are constant, we
slightly extended it by averaging the costs before each run. In order to handle
the exponential complexity of SUBGRAPH, we enforced a time limit of 1 ms for

8 D. B. Blumenthal et al.

computing a cell ci,k of its LSAPE instance. All methods were run with and
without pagerank centralities with the meta-parameter β set to 0.3, which, in
[12], is reported to be the setting that yields the tightest average upper bound.

For learning the meta-parameters of RINGOPT, RINGGD, RINGMS, SUBGRAPH, and
WALKS, we picked a training set T ⊂ D with |T | = 50 for each dataset D.
As suggested in [6, 8], we learned the parameter L of the methods SUBGRAPH

and WALKS by picking the L ∈ {1, 2, 3, 4, 5} which yielded the tightest average
upper bound on T . For choosing the meta-parameters of the variants of RING,
we proceeded as suggested in Section 3.2: We set the tuning parameter µ to 1
and used NOMAD [9] as our blackbox optimizer, which we initalized with 100
randomly constructed simplex vectors α and λ. All methods are implemented
in C++ and use the same implementation of the LSAPE solver proposed in [5].
Except for WALKS, all methods allow to populate the LSAPE instance C in
parallel and were set up to run in five threads. Tests were run on a machine
with two Intel Xeon E5-2667 v3 processors with 8 cores each and 98 GB of main
memory.3

For each dataset D, we ran each method with and without pagerank central-
ities on each pair (G,H) ∈ D×D with G 6= H. We recorded the runtime and the
value of the returned upper bound for GED. Figure 3 shows the results of our
experiments. The first column shows the average runtimes and upper bounds of
the tested methods without centralities. The second column shows the effect of
including centralities. On all datasets, RINGOPT yielded the tightest upper bound.
Also RINGMS performed excellently, as its upper bound deviated from the one
produced by RINGOPT by at most 4.15 % (on ALKANE). At the same time, on
the datasets ACYCLIC, PAH, and MAO, RINGMS was around two times faster
than RINGOPT. On the contrary, RINGGD was not significantly faster than RINGOPT

and, on ACYCLIC, produced a 16.18 % looser upper bound.
All competitors produced significantly looser upper bounds than our al-

gorithms. In terms of runtime, our algorithms were outperformed by BRANCH,
BRANCH-FAST, and BP, performed similarly to WALKS, and were much faster than
SUBGRAPH. Adding pagerank centralities did not improve the overall performance
of the tested methods: It lead to a maximal tightness gain of 4.90 % (WALKS on
ALKANE) and dramatically increased the runtimes of some algorithms.

5 Conclusions and Future Work

In this paper, we have presented RING, a new instantiation of the paradigm
LSAPE-GED which defines the local structure of a node u as a collection of node
and edge sets at fixed distances from u. An empirical evaluation has shown that
RING produces the tightest upper bound among all instantiations of LSAPE-GED.
In the future, we will use ring structures for defining feature vectors of node
assignments to be used in a machine learning based approach for approximating
GED. Furthermore, we will examine how using RING for initialization affects the
performance of the local search methods suggested in [4, 7, 11,14].

3 Source code and datasets: http://www.inf.unibz.it/~blumenthal/gedlib.html.

Ring Based Approximation of Graph Edit Distance 9

12 14 16

10−1

100

101

upper bound

ru
n
ti

m
e

in
m

s

ALKANE (no centralities)

0 2 4
0

100

200

tightness gain in %

ru
n
ti

m
e

lo
ss

in
% ALKANE (pagerank centralities)

19 20 21 22

10−1

100

101

upper bound

ru
n
ti

m
e

in
m

s

ACYCLIC (no centralities)

1 2 3 4
0

100

200

tightness gain in %
ru

n
ti

m
e

lo
ss

in
% ACYCLIC (pagerank centralities)

30 35 40 45
10−1

100

101

upper bound

ru
n
ti

m
e

in
m

s

PAH (no centralities)

0 0.2 0.4 0.6 0.8
0

100

200

300

tightness gain in %

ru
n
ti

m
e

lo
ss

in
% PAH (pagerank centralities)

25 30 35 40
10−1

100

101

upper bound

ru
n
ti

m
e

in
m

s

MAO (no centralities)

0 0.5 1 1.5
0

100

200

300

tightness gain in %

ru
n
ti

m
e

lo
ss

in
% MAO (pagerank centralities)

RINGOPT RINGGD RINGMS WALKS

SUBGRAPH BRANCH BRANCH-FAST BP

Fig. 3. Results of the experiments.

References

1. Abu-Aisheh, Z., Gaüzere, B., Bougleux, S., Ramel, J.Y., Brun, L.,
Raveaux, R., Héroux, P., Adam, S.: Graph edit distance contest 2016:
Results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017).
https://doi.org/10.1016/j.patrec.2017.10.007

2. Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph
edit distance. IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018).
https://doi.org/10.1109/TKDE.2017.2772243

3. Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit dis-
tance. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.05.002

10 D. B. Blumenthal et al.

4. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46
(2017). https://doi.org/10.1016/j.patrec.2016.10.001

5. Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assign-
ment with error-correction and no cost constraints. Pattern Recogn. Lett. (2018).
https://doi.org/10.1016/j.patrec.2018.03.032

6. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit
distance computation combining bipartite matching and exact neighborhood
substructure distance. In: Liu, C., Luo, B., Kropatsch, W.G., Cheng, J.
(eds.) GbRPR 2015. LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18224-7 19

7. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit dis-
tance using bipartite graph matching. In: Liu, C., Luo, B., Kropatsch, W.G.,
Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18224-7 8

8. Gauzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M.,
Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Cham
(2014). https://doi.org/10.1007/978-3-662-44415-3 8

9. Le Digabel, S.: Algorithm 909: NOMAD: Nonlinear optimization with the
MADS algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011).
https://doi.org/10.1145/1916461.1916468

10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means
of bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009).
https://doi.org/10.1016/j.imavis.2008.04.004

11. Riesen, K., Bunke, H.: Improving bipartite graph edit distance approxima-
tion using various search strategies. Pattern Recogn. 48(4), 1349–1363 (2015).
https://doi.org/10.1016/j.patcog.2014.11.002

12. Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation
by centrality measures. In: ICPR 2014. pp. 3910–3914. IEEE Computer Society
(2014). https://doi.org/10.1109/ICPR.2014.671

13. Riesen, K., Ferrer, M., Fischer, A., Bunke, H.: Approximation of graph edit
distance in quadratic time. In: Liu, C., Luo, B., Kropatsch, W.G., Cheng,
J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 3–12. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18224-7 1

14. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approxi-
mation with simulated annealing. In: Foggia, P., Liu, C., Vento, M. (eds.)
GbRPR 2017. LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58961-9 20

15. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms
and comparison of software implementations. J. Global Optim. 56(3), 1247–1293
(2013). https://doi.org/10.1007/s10898-012-9951-y

16. Serratosa, F., Cortés, X.: Graph edit distance: Moving from global to local structure
to solve the graph-matching problem. Pattern Recogn. Lett. 65, 204–210 (2015).
https://doi.org/10.1016/j.patrec.2015.08.003

17. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing
stars: On approximating graph edit distance. PVLDB 2(1), 25–36 (2009).
https://doi.org/10.14778/1687627.1687631

18. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search
over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015).
https://doi.org/10.1109/TKDE.2014.2349924

