

Shape Similarity based on a Treelet Kernel with Edition

joint work

S. Bougleux, L. Brun, M. Mokhtari

F.-X. Dupé

Context

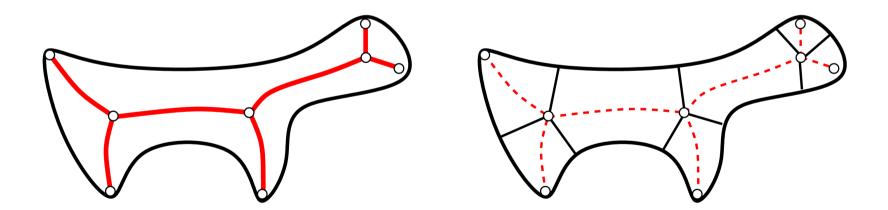
- 2D shapes given by
 - continuous functions of their boundaries
 - binary functions defined over a discrete domain

How to compare these shapes ?

- for matching, classification
 - structural and numerical methods
 - > boundary-based, skeleton-based

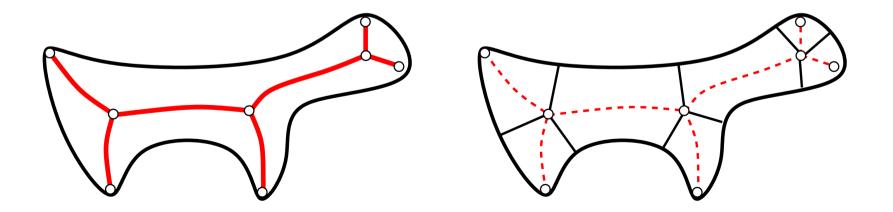
From shapes to graphs

- medial axis skeleton (centers of maximal inscribed disks)
 - graph structure invariant to scaling, rotations and translations
 - homotopic to the shape
 - induces a natural decomposition of the shape
 - weak representation of local properties needed for shape comparison



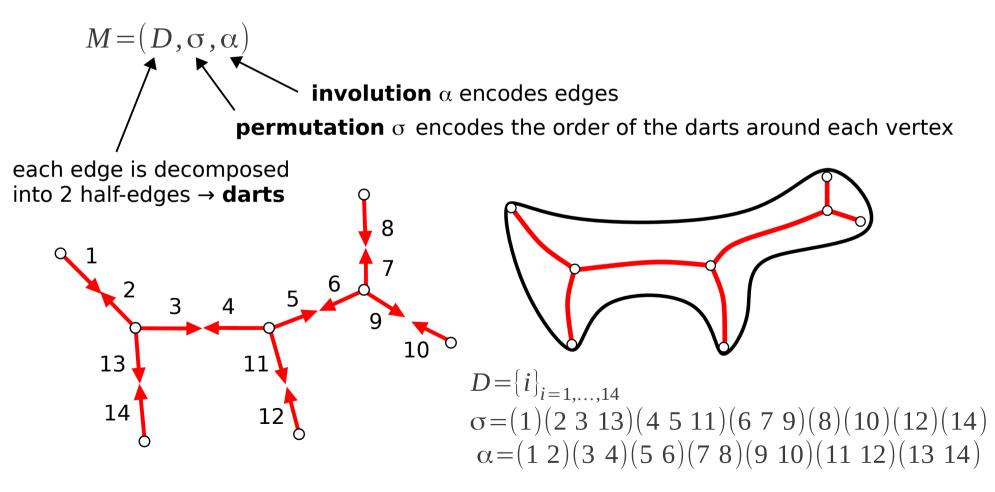
From shapes to graphs

- skeleton graph + attributes
- nodes (intersection and terminal points)
 - distance to gravity center (normalized by shape area)
- edges (branches)
 - Iength of the boundary induced by the branch (normalized by total length)
 - $\ensuremath{\scriptstyle \rightarrow}$ evolution of the radius of minimal inscribed disks along the branch
 - > area of the corresponding sub-shape (normalized by the total area)



From shapes to graphs

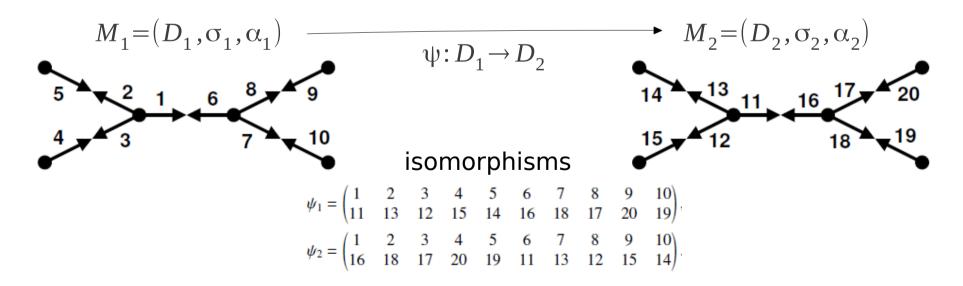
- skeleton graph embedded in the plane
 - combinatorial map to encode the orientation of edges around nodes



Comparison of shapes → **combinatorial maps**

- equivalence between maps (having the same number of darts)
- orientation-preserving symmetry [Cori 85]
 - ψ isomorphism between two maps $M_1 = (D_1, \sigma_1, \alpha_1)$ and $M_2 = (D_2, \sigma_2, \alpha_2)$
 - → edges are preserved: $\psi \circ \alpha_1 = \alpha_2 \circ \psi$
 - → orientation around nodes is preserved: $\psi \circ \sigma_1 = \sigma_2 \circ \psi$

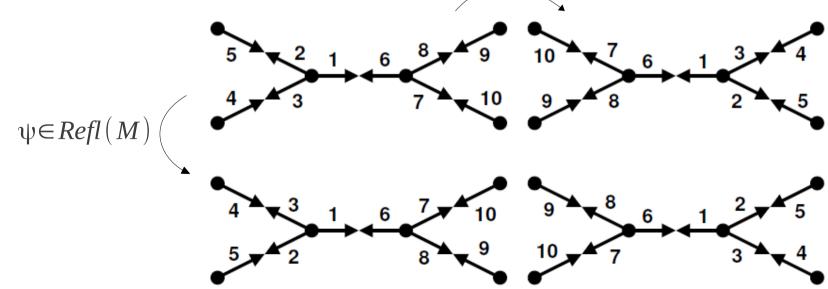
→ set of automorphisms of M = Aut(M)



Comparison of shapes → **combinatorial maps**

- equivalence between maps (having the same number of darts)
- orientation-reversing symmetry
 - ψ reflection between two maps $M_1 = (D_1, \sigma_1, \alpha_1)$ and $M_2 = (D_2, \sigma_2, \alpha_2)$
 - → edges are preserved: $\psi \circ \alpha_1 = \alpha_2 \circ \psi$
 - → orientation around nodes is reversed: $\psi \circ \sigma_1 = \sigma_2^{-1} \circ \psi$

→ set of reflections of M = Refl(M)

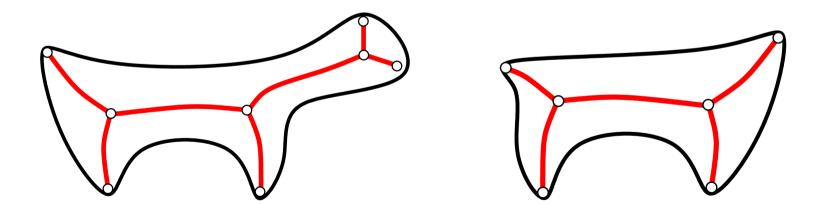


Comparison of shapes → **combinatorial maps**

equivalence between maps (having the same number of darts)

 $Sym(M) = Aut(M) \cup Refl(M) = Aut(M) \cup Aut(M^{-1})$

- equivalence between maps with different numbers of darts ?
- comparison of maps with attributes attachted to nodes and edges ?

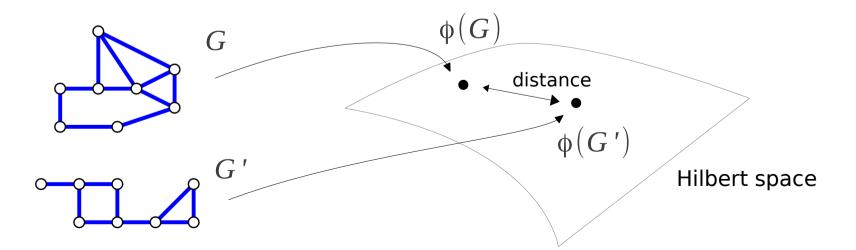


Graph kernels

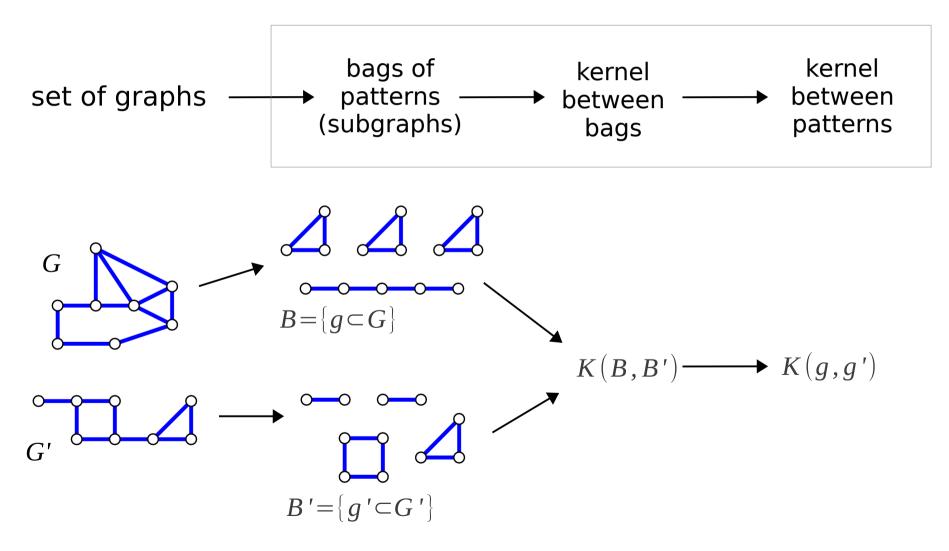
idea: induce a mapping within a Hilbert space

 $K(G,G') = \langle \phi(G), \phi(G') \rangle$

- → *K* may be understood as a similarity measure between *G* and *G*′
- K is usually designed to provide an easy separation between classes
- → equility hold only if *K* is (symmetric) **positive-definite**



Design of graph kernels



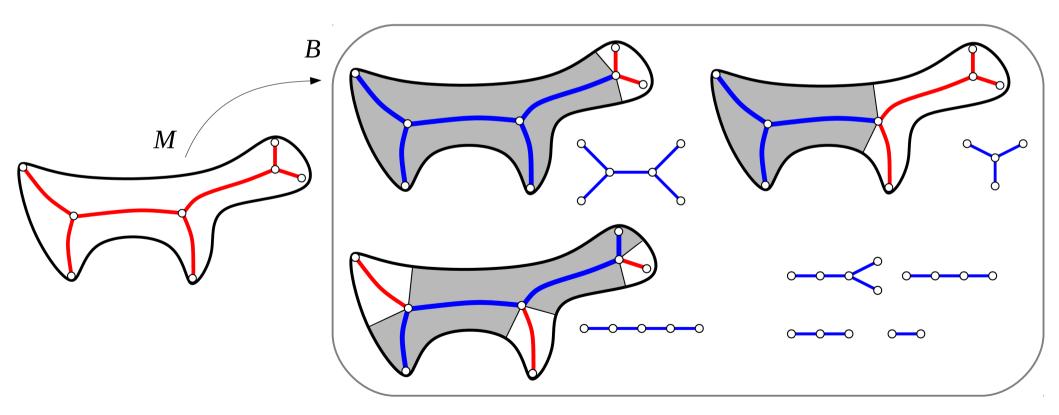
Bag of patterns framework

- all walks of a graph (Random walk kernel) [Kashima et al., ICML03]
 - implicit enumeration
 - linear representation
- all trails up to a given depth [Dupe and Brun, GbR09]
 - + explicit enumeration
 - linear representation
- all tree patterns up to a given length [Mahé and Vert, Machine Learning 09]
 - implicit enumeration
 - + nonlinear representation
- all subgraphs up to size 5 [Shervashidze et al., Conf. Art. Intel. and Stat. 09]
 - + explicit enumeration
 - + nonlinear representation
- all tree patterns of a dictionary [Gauzere et al., GbR11] [Bougleux et al., ICPR12]
 - + explicit enumeration
 - + nonlinear representation

Introduction Shape similarity Experiments

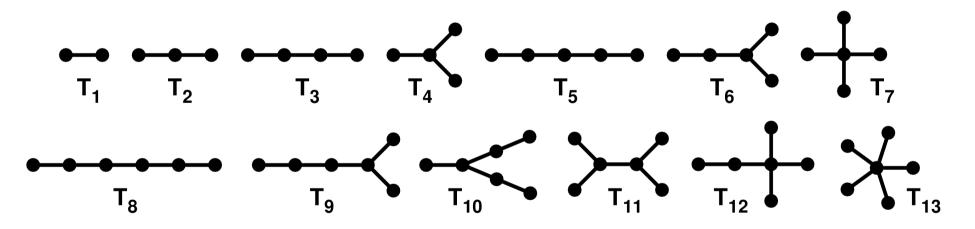
Combinatorial map encoding → Bag of sub-structures

- shape represented by a bag B of sub-shapes easier to compare
- each sub-shape is encoded by a submap of the skeleton map M

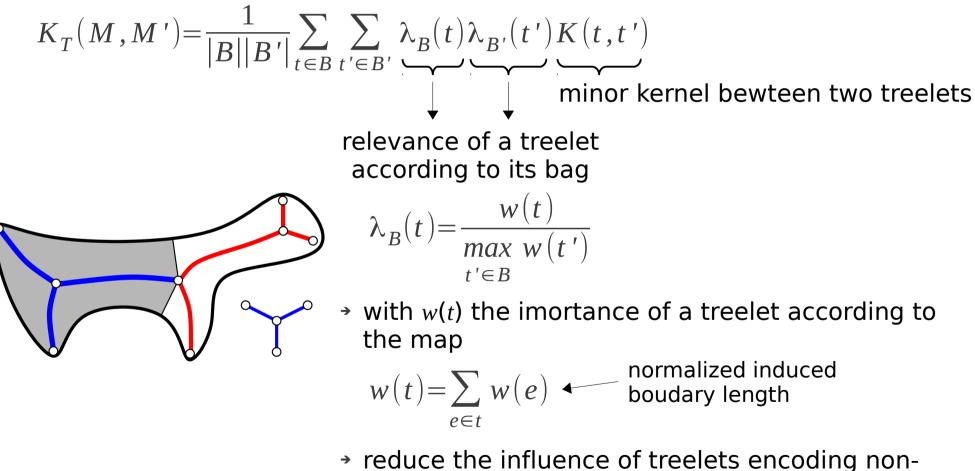


Combinatorial map encoding → Bag of treelets

- a treelet is an instance of a tree pattern in a map
- bag of treelets
 - enumeration of all the treelets of a map
 - according to a dictionary of tree patterns



Kernel between two bags of treelets



reduce the influence of treelets encoding n relevant parts of the shape

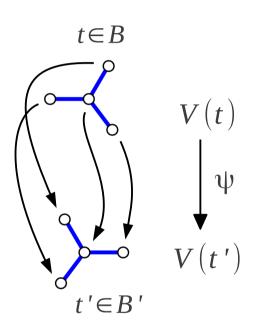
Treelets corresponding to a same tree pattern T_p

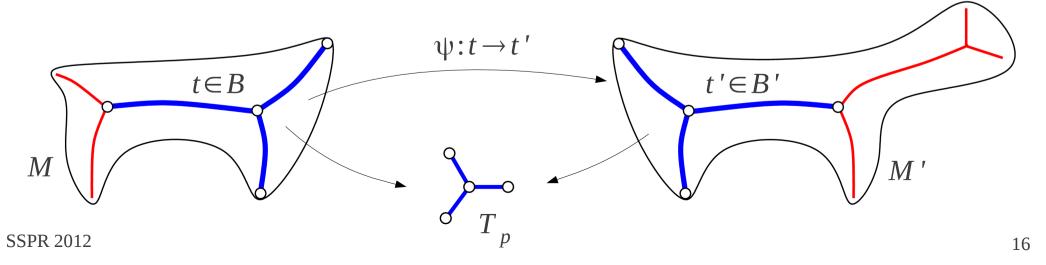
- given a mapping $\psi: t \rightarrow t'$
- kernel between treelets aligned by ψ
 product of node and edge similarities

$$K_{\psi}(t,t') = \prod_{v \in V(t)} K_{V}(v,\psi(v)) \prod_{e \in E(t)} K_{E}(e,\psi(e))$$

kernel between nodes or edges

$$K_{A}(a,a') = \prod_{k=1}^{k=n_{A}} \exp\left(-\frac{\|f_{A,k}(a) - f_{A,k}(a')\|^{2}}{2\sigma^{2}}\right)$$





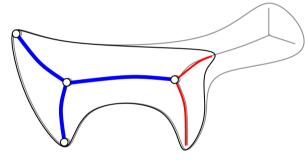
Treelets corresponding to a same tree pattern T_{n}

- several mappings $\psi \in Sym(T_p)$
- correspond to rotational and mirror shape symmetries



Treelets corresponding to a same tree pattern T_{n}

- among the mappings $\psi \in Sym(t,t')$
- choosing the one realizing the **best alignment**: argmax $K_{\psi}(t,t')$
 - may lead to kernels not (symmetric) positive-definite
 - inadapted to discriminate dissimilar treelets



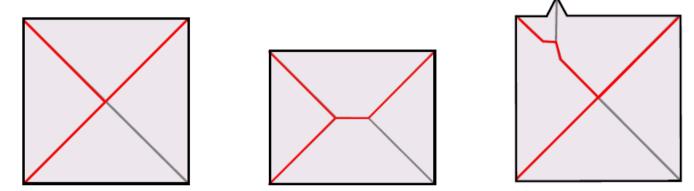
kernel between two treelets

= average of the similarities between their different matches

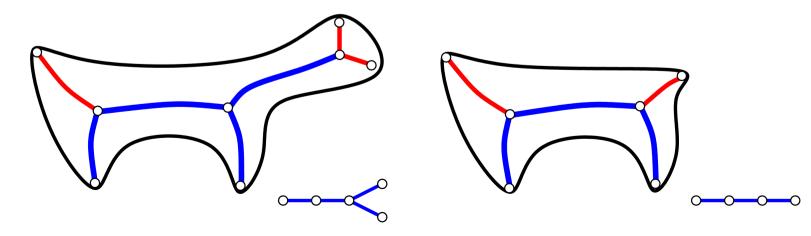
$$K_{treelet}(t,t') = \frac{1}{|Sym(t,t')|} \sum_{\psi \in Sym(t,t')} K_{\psi}(t,t'), \quad if Sym(t,t') \neq \emptyset,$$

and 0 otherwise (t and t' are not isomorphic to a same tree pattern)

- skeletons are sensitive to small shape deformations
 - kernel $K_{treelet}$ can be affected by structural noise



- 2 treelets not corresponding to a same tree pattern
 - may be similar up to node suppressions and edge contractions



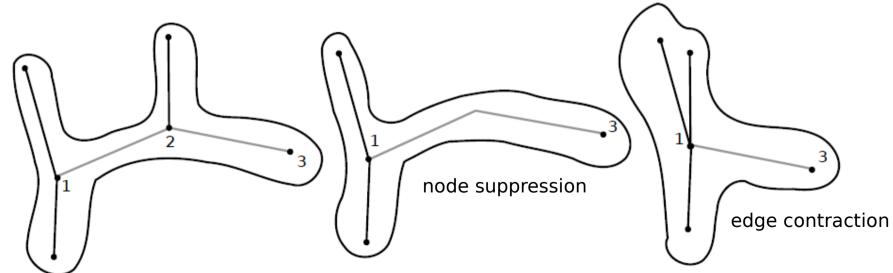
each treelet is transformed into a sequence of smaller ones

node suppression

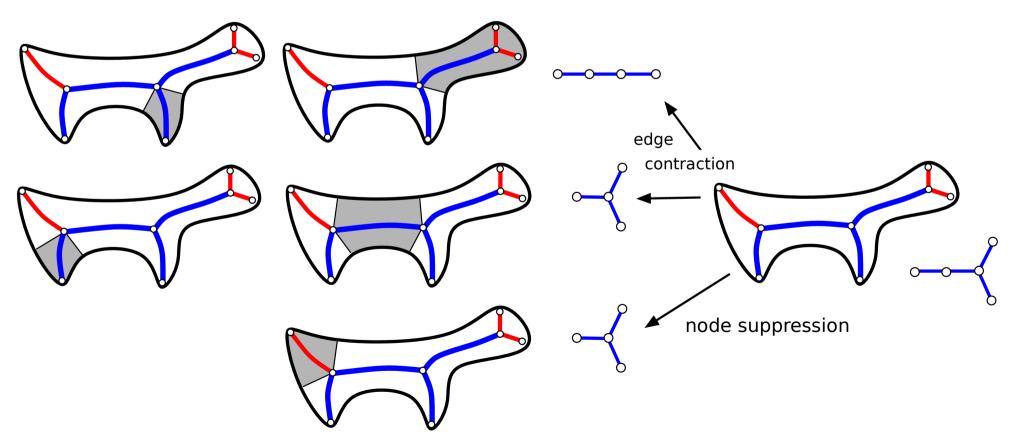
- cut parts connected to the node and outside of the treelet
- merge parts connected to the node and inside the treelet
- restricted to nodes of degree 2

edge contraction

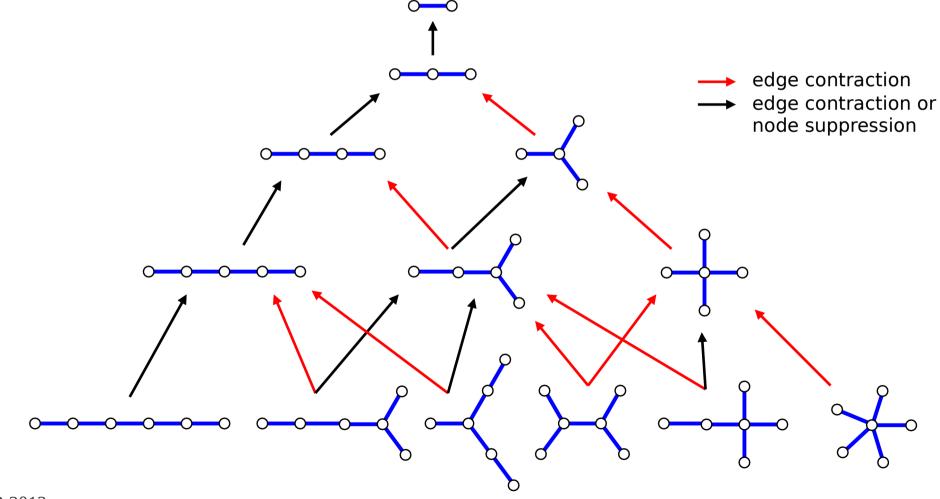
- contraction of the shape
- applied to each edge of the treelet



- given a treelet t with k nodes
 - \rightarrow transform *t* into a treelet with *k*-1 nodes with an edit operation
- set of possible rewritings R(t)



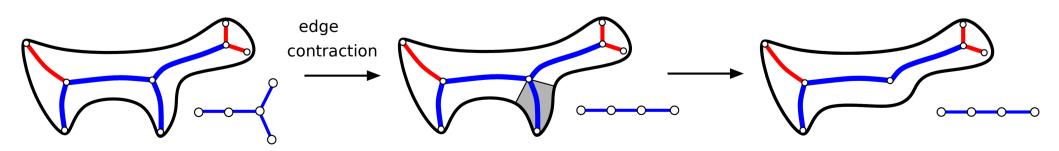
set of possible rewritings of treelets
 acyclic graph on the set of tree patterns



- given a treelet t with k nodes
 - \rightarrow transform t into a treelet with k-1 nodes with an edit operation
- several rewritings R(t)
 - retain the one inducing a minimal shape distortion
- cost assigned to an edit operation $r(t) \in R(t)$

$$cost(r(t)) = \frac{length(\partial P_{r(t)})}{length(\partial S)} \quad \longleftarrow P_{r(t)}: \text{ part of the shape which is deleted}$$

• minimal operation: $\kappa(t) = \underset{r \in R(t)}{\operatorname{argmin}} \operatorname{cost}(r)$



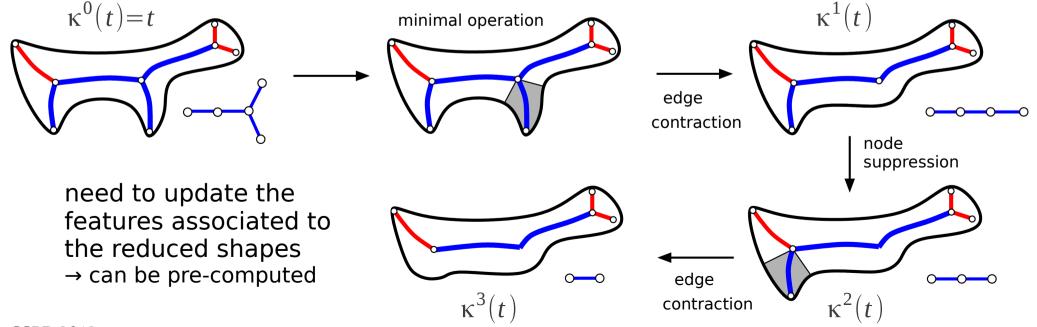
application of k successive minimal operations

 $t = \kappa^{0}(t), \kappa^{k}(t) = \kappa(\kappa(\dots\kappa(t)))$

cost of k successive minimal operations

 $cost_k(t) = sum of the costs of each operation needed to reduce t to <math>\kappa^k(t)$

consider the m_t operations needed to reduce t to an edge



Hierarchical treelet kernel based on edition

- similarity between two treelets (equivalent or not)
 - = sum of the similarities between the equivalent reduced treelets

$$K_{edit}(t,t') = \sum_{k=0}^{k=m_t} \sum_{l=0}^{l=m_t'} \exp\left(-\frac{\cos t_k(t) + \cos t_l(t')}{2\sigma_{edit}^2}\right) K_{treelet}(\kappa^k(t),\kappa^l(t'))$$

where equivalent treelets are compared according to all their different correspondances

$$K_{treelet}(t,t') = \begin{cases} \frac{1}{|Sym(t,t')|} \sum_{\psi \in Sym(t,t')} K_{\psi}(t,t') & \text{if } Sym(t,t') \neq \emptyset\\ 0 & \text{otherwise} \end{cases}$$

and global kernel between two maps (shapes) becomes

$$K_{T}(M, M') = \frac{1}{|B||B'|} \sum_{t \in B} \sum_{t' \in B'} \lambda_{B}(t) \lambda_{B'}(t') K_{edit}(t, t')$$

Hierarchical treelet kernel based on edition

similarity between of shapes

$$K_{T}(M, M') = \frac{1}{|B||B'|} \sum_{t \in B} \sum_{t' \in B'} \lambda_{B}(t) \lambda_{B'}(t') K_{edit}(t, t')$$

- * kernel between bags of combinatorial maps
- (symmetric) positive-definite
- weighted mean kernel [Kashima et al., ICML03] [Suard et al., ESANN07] but with edition [Dupe and Brun, ICIAP09]
- Image: minimal edition operations can be pre-computed for each treelet
- relies on reacher structures than its counterpart based on paths [Dupe and Brun, ICIAP09 and GbR09]

Introduction Shape similarity Experiments

k-NN matching on Kimia25 dataset [Shavit et al., JVCIP98]

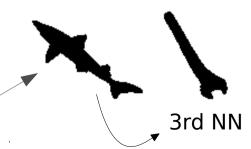
- 6 classes, 25 shapes
 - part of the dataset

k-NN matching on Kimia25 dataset [Shavit et al., JVCIP98]

- 6 classes, 25 shapes
- consider the 3 NN of each shape

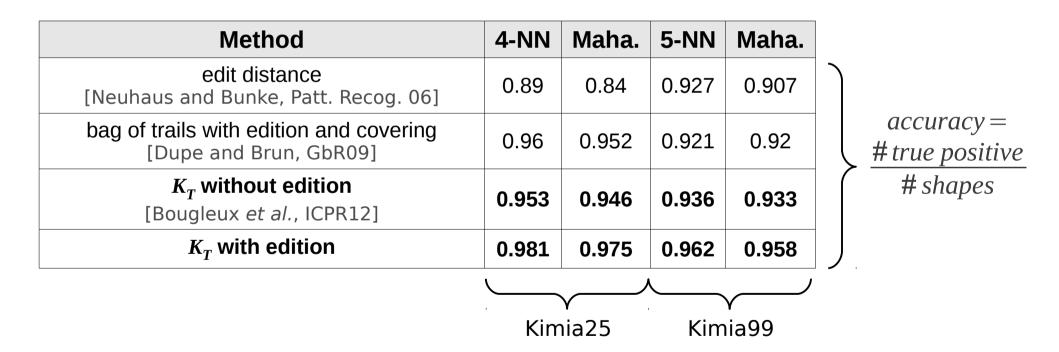
Method	k=1	k=2	k=3
edit distance [Neuhaus and Bunke, Patt. Recog. 06]	23	19	18
SID [Sharvit <i>et al.</i> , JVCIP 98]	23	21	20
<i>K_T</i> restricted to paths without edition [Dupe and Brun, GbR09]	24	22	21
syntactic matching [Gdalyahu and Weinshall, PAMI 99]	25	21	19
shape context [Belongie <i>et al.</i> , PAMI 02]	25	24	22
<i>K_T</i> without edition [Bougleux <i>et al.</i> , ICPR12]	25	24	22
ID-shape context [Ling and Jacobs, PAMI 07]	25	24	25
K_T with edition	25	25	24

number of closest
shapes belonging
to the same class



Classification on Kimia25 and 99 [Shavit et al., JVCIP98]

- 6 classes, 25 shapes 11 classes, 99 shapes
- k-fold cross-validation based on Mahalanobis distance or k-NN



estimation of kernel parameters by a cross-validation on a reduced dataset

Shape similarity

- decomposition of skeletons into treelets embedded in the plane
- weighted mean kernel between bags of treelets
- hierarchical comparison through an edition mechanism
- take into accout rotational and mirror shape symmetries
- improve the behavior of similar kernels
 - without edition
 - with edition and covering, but restricted to paths (trails)

Futur work

- behavior of the kernel on more complex datasets ?
 need to take into account shapes with holes
- other strategies for computing a minimal set of successive reductions
- extension to 3D shapes and other type of data (images)

Thanks for your attention.

Any question !