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Gabriel Peyré, Sébastien Bougleux and Laurent Cohen
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Abstract. This article proposes a new framework to regularize linear
inverse problems using the total variation on non-local graphs. This non-
local graph allows to adapt the penalization to the geometry of the
underlying function to recover. A fast algorithm computes iteratively
both the solution of the regularization process and the non-local graph
adapted to this solution. We show numerical applications of this method
to the resolution of image processing inverse problems such as inpainting,
super-resolution and compressive sampling.

1 Introduction

State of the art image denoising methods perform a non-linear filtering that
is adaptive to the image content. This adaptivity enables a non-local averaging
of image features, thus making use of the relevant information along an edge or a
regular texture pattern. This article shows how such adaptive non-local filterings
can be extended to handle general inverse problems beyond simple denoising.

Adaptive Non-Local Image Processing. Traditional image processing methods
use local computation over a time-frequency or a multi-scale domain [1]. These
algorithms use either fixed transforms such as local DCT or wavelets, or fixed
regularization spaces such as Sobolev or bounded variations, to perform image
restoration.

In order to better respect edges in images, several edge-aware filtering schemes
have been proposed, among which Yaroslavsky’s filter [2], the bilateral filter [3],
Susan filter [4] and Beltrami flow [5]. The non-local means filter [6] goes one
step further by averaging pixels that can be arbitrary far away, using a similar-
ity measure based on distance between patches. This non-local averaging shares
similarities with patch-based computer graphics synthesis [7, 8].

These adaptive filtering methods can be related to adaptive decompositions
in dictionaries of orthogonal bases. For instance the bandlets best basis decom-
position [9] re-transform the wavelet coefficients of an image in order to better
capture edges. The grouplet transform of Mallat [10] does a similar retransfor-
mation but makes use of an adaptive geometric flow that is well suited to capture
oriented oscillating textures [11].
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Regularization and inverse problems. Non-local filtering can be understood as a
quadratic regularization based on a non-local graph, as detailed for instance in
the geometric diffusion framework of Coifman et al. [12], which has been applied
to non-local image denoising by Szlam et al. [13]. Denoising using quadratic pe-
nalization on image graphs is studied by Guilboa and Osher for image restoration
and segmentation [14].

These quadratic regularizations can be extended to non-smooth energies such
as the total variation on graphs. This has been defined over the continuous
domain by Gilboa et al. [15] and over the discrete domain by Zhou and Schölkopf
[16]. Elmoataz et al. [17] consider a larger class of non-smooth energies involving
a p-laplacian for p < 2. Peyré replaces these non-linear flows on graphs by a
non-iterative thresholding in a non-local spectral basis [18].

A difficult problem is to extend these graph-based regularizations to solve
general inverse problems. The difficulty is that graph-based regularizations are
adaptive since the graph depends on the image. To perform denoising, this graph
can be directly estimated from the noisy image. To solve some specific inverse
problems, the graph can also be estimated from the measurements. For instance,
Kindermann et al. [19] and Buades et al. [20] perform image deblurring by using
a non-local energy computed from the blurry observation. A similar strategy is
used by Buades et al. [21] to perform demosaicing, where the non-local graph
is estimated using an image with missing pixels. For inpainting of thin holes,
Gilboa and Osher [22] compute a non-local graph directly from the image with
missing pixels.

These approaches are different from recent exemplar-based methods intro-
duced to solve some inverse problems, such as super-resolution (see for instance
[23–25]). Although these methods operate on patches in a manner similar to
non-local methods, they make use of pairs of exemplar patches where one knows
both the low and high resolution versions.

Contributions. This paper proposes a new framework to solve general inverse
problems using a non-local and non-linear regularization on graphs. Our al-
gorithm is able to efficiently solve for a minimizer of the proposed energy by
iteratively computing an adapted graph and a solution of the inverse problem.
We show applications to inpainting, super-resolution and compressive sampling
where this new framework improves over wavelet and total variation regulariza-
tion.

2 Non-local Regularization

2.1 Inverse Problems and Regularization

Many image processing problems can be formalized as the recovery of an
image f ∈ Rn from a set of p 6 n noisy linear measurements

y = Φf + ε ∈ Rp.
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where ε is an additive noise. The linear operator Φ typically accounts for some
blurring, sub-sampling or missing pixels so that the measured data y only cap-
tures a small portion of the original image f one wishes to recover.

In oder to solve this ill-posed problem, one needs to have some prior knowl-
edge on the kind of typical images one expects to restore. This prior information
should help to recover the missing information. Regularization theory assumes
that f has some smoothness, for instance small derivatives (linear Sobolev reg-
ularization) or bounded variations (non-linear regularization).

A regularized solution f? to the inverse problem can be written in variational
form as

f? = argmin
g∈Rn

1
2
||y − Φg||2 + λJ(g), (1)

where J is small when g is close to the smoothness model. The weight λ needs to
be adapted to match the amplitude of the noise ε, which might be a non-trivial
task in practical situations.

Classical variational priors include
Total variation: The bounded variations model imposes that f? has a small
total variation and uses

J tv(g) def.= ||g||TV
def.=

∫
|∇xg|dx. (2)

This prior has been introduced by Rudin, Osher and Fatemi [26] for denois-
ing purpose. It has been extended to solve many inverse problems, see for
instance [27].
Sparsity priors: Given a frame (ψm)m of Rn, one defines a sparsity enforcing
prior in this frame as

J spars(g) def.=
∑
m

|〈g, ψm〉|. (3)

This prior has been introduced by Donoho and Johnstone [28] with the orthog-
onal wavelet basis for denoising purpose. It has then been used to solve more
general inverse problems, see for instance [29] and the references therein. It
can also be used in conjunction with redundant frames instead of orthogonal
bases, see for instance [30, 31].

2.2 Graph-based Regularization

Differential operators over graphs. We consider a weighted graph w that links
together pixels x, y over the image domain with a weigth w(x, y). This graph
allows to compute generalized discrete derivatives using the graph gradient op-
erator

∀x, ∇w
x f =

(√
w(x, y)(f(y)− f(x))

)
y
∈ Rn.

This operator defines, for any pixel x, a gradient vector ∇w
x f ∈ Rn, see [32]. The

divergence operator divw = (∇w)T is the adjoint of the gradient, viewed as an
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operator f 7→ ∇wf ∈ Rn×n. For a gradient field Fx ∈ Rn, the divergence is

(divw(F ))(x) =
∑

y

√
w(x, y)(Fx(y)− Fy(x)).

The total-variation energy of an image, according to the graph structure
given by w is then defined as

Jw(f) =
∑

x

||∇w
x f ||, (4)

where || · || is the euclidean norm over Rn.
This energy was proposed by Gilboa et al. [15] in the continuous setting. It

is used in the discrete setting by Zhou and Schölkopf [16] and Elmoataz et al.
[17] in order to perform denoising.

Non-local graph adaptation. Given an image f ∈ Rn to process, one wishes
to compute an adapted graph w(f) so that the regularization by Jw efficiently
removes noise without destroying the salient features of the image. In order to do
so, we use a non-local graph inspired by the non-local means filtering [6], which
has been used in several recent methods for denoising, see for instance [15, 17]

This non-local graph is built by comparing patches around each pixel. A
patch px(f) of size τ × τ (τ being an odd integer) around a pixel position x ∈
{0, . . . ,

√
n− 1}2 is

∀ t ∈ {−(τ − 1)/2 + 1, . . . , (τ − 1)/2}2, px(f)(t) def.= f(x+ t).

A patch px(f) is handled as a vector of size τ2. Color images f of n pixels can
be handled using patches of dimension 3τ2.

The non-local means algorithm [6] filters an image f using the following
image-adapted weights w = w(f)

w(x, y) =
w̃(x, y)
Zx

where w̃(x, y) =

{
e−

||px(f)−py(f)||
2σ2 if ||x− y|| 6 δ

2 ,
0 otherwise,

(5)

where the normalizing constant is Zx
def.=

∑
y w̃(x, y). The parameter δ > 0

restricts the non-locality of the method and also allows to speed-up computation.
The parameter σ controls how many patches are taken into account to perform
the averaging. It is a difficult parameter to set and ideally it should also be
adapted to the noise level |ε|.

In the following, we consider the mapping f 7→ w(f) as a simple way to adapt
a set of non-local weights to the image f to process.

Graph-based regularization of inverse problems. We propose to use this graph
total-variation (4) to solve not only the denoising problem but arbitrary inverse
problems such as inpainting, super-resolution and compressive sampling.
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Our non-local graph regularization framework tries to recover an image f?

from a set of noisy measurements y = Φf+ε using an adapted energy Jw(f). The
graph w(f) should be adapted to the image f to recover, but unfortunately, one
does not have this information since only the noisy observations y are available.
In order to cope with such a problem, one performs an optimization over both
the image f? to recover and the optimal graph w(f?) as follow

f? = argmin
g∈Rn

1
2
||y − Φg||2 + λJw(g)(g). (6)

It is important to note that the functional prior Jw(g) depends non-linearly on
the image g being recovered through equation (5).

2.3 Proximal Resolution of the Graph Regularization

The optimization of (6) is difficult because the energy Jw(g)(g) makes it
non-convex. We use an iterative approximate minimization that optimizes suc-
cessively the optimal graph and then the image to recover.

Since Jw is a non-smooth functional, gradient descent methods are inefficient
to minimize Jw. In order to cope with this issue, we use proximal iterations. The
resulting algorithm is based on three main building blocks:

The non-local graph adaptation procedure, equation (5), to compute a graph
w(fk) adapted to the current estimate fk of the algorithm.
Proximal iterations to solve (6) when the graph is fixed.
Fixed point iterations to compute the proximity operator needed for the prox-
imal iterations.

Proximal iterations. Equation (5) allows to compute a graph w adapted to a
current estimate of the algorithm. In order to solve the initial regularization (6),
we suppose that the graph w is fixed, and look for a minimizer of

f?(w) = argmin
g∈Rn

1
2
||y − Φg||2 + λJw(g). (7)

This non-smooth convex minimization is difficult to solve because of the rank-
defficient matrix Φ that couples the entries of g. In order to perform the opti-
mization, we use iterative projections with a proximal operator.

Proximal iterations replace problem (7) by a series of simpler problems. This
strategy has been developed to solve general convex optimizations and has been
applied to solve non-smooth convex problems in image processing [33, 34].

The proximity operator of a convex functional J : Rn → R+ is defined as

ProxJ(f) = argmin
g∈Rn

1
2
||f − g||2 + J(f). (8)

A proximal iteration step uses the proximity operator to decrease the func-
tional (7) one wishes to minimize

f (k+1) = Proxλ
µ Jw

(
f (k) +

1
µ
ΦT(y − Φf (k))

)
. (9)
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It uses a step size µ > 0 that should be set in order to ensure that ||ΦTΦ|| < µ. If
the functional J is lipshitz continuous (which is the case of Jw), then f (k) tends
to f?(w) which is a minimizer of (7), see for instance [33].

Computation of the proximity operator. In order to compute the proximity op-
erator ProxJw

for the functional Jw, one needs to solve the minimization (8),
which is simpler than the original problem (7) since it does not involve anymore
the operator Φ.

In order to do so, we use a fixed point algorithm similar to the one of Cham-
bolle [35]. It is based on the computation of a gradient field g(x) ∈ Rn at each
pixel x

gi+1(x) =
gi(x)− ηh(x)
1 + η||h(x)||

with h(x) = ∇w
x

(
divw(gi)−

µ

λ
f)

)
. (10)

One can then prove that if η is small enough, the iterations (10) satisfy

f − λ divw(gi)
i→+∞−→ Proxλ

µ Jw
(f).

In numerical computation, since the graph w defined by equation (5) is relatively
sparse (each pixel is connected to less than δ2 pixels), g(x) is stored as a sparse
vector.

Graph regularization algorithm. The algorithm to minimize approximately (6)
is detailed in table 1. It proceeds by iterating the proximal mapping (9). Each
computation of this proximity operator requires m inner iterations of the dual
gradient descent (10). Since the proximal iterations are robust against imperfect
computation of the proximity operator, m is set to a small constant.

1. Initialization: set f (0) = 0 and k ← 0.
2. Enforcing the constraints: compute f̃ (k) = f (k) + 1

µ
ΦT(y − Φf (k)).

3. Update the graph: compute the non-local graph w(k) = w(f̃ (k)) adapted to f̃ (k)

using equation (5).

4. Compute proximal iterations: Set g
(k)
0 = ∇w(k)

f (k). Perform m steps of the itera-
tions of (10)

g
(k)
i+1(x) =

g
(k)
i (x)− ηh(x)

1 + η||h(x)|| with h(x) = ∇w(k)

x

“
divw(k)

(g
(k)
i )− µ

λ
f̃ (k)

”
.

Set the new estimate f (k+1) = f̃ (k) − λ divw(k)
(g

(k)
m ).

5. Stopping criterion: while not converged, set k ← k + 1 and go back to 2.

Table 1: Block coordinate descent algorithm to minimize approximately (6).
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3 Numerical Illustration

In the numerical simulations, we consider three different regularizations:
The total variation energy J tv, defined in equation (2). An algorithm very
similar to the algorithm of table 1 is used for this minimization, excepted that
∇x is the classical gradient and that the step 3 of algorithm 1 is not needed.
The sparsity energy J spars, defined in equation (3), using a redundant tight
frame of translation invariant wavelets (ψm)m. An algorithm very similar to
the one of table 1 is used for this minimization, excepted that the proximal
projection is computed with a soft thresholding as detailed in [31] and that
the step 3 of algorithm 1 is not needed.
The non-local total variation regularization Jw in an optimized graph, solved
using algorithm 1. For this regularization, the parameter σ of equation (5)
is fixed by hand in order to have consistent results for all experiments. The
locality parameter δ of equation (5) is fixed to 15 pixels.

Both total variation and non-local total variation require approximately the same
number of iterations. For these two methods, the number of inner iterations to
solve for the proximity operator is set to m = 10. The non-local iteration is
computationally more intensive since the computation of the non-local weights
(w(x, y))y requires to explore δ2 pixels y for each pixel x. In the three applications
of sections 3.1, 3.2 and 3.3, we use a low noise level |ε| of .02||y||. For all the
proposed methods, the parameter λ is optimized in an oracle manner in order
to minimize the PSNR of the recovered image f?

PSNR(f?, f) = −20 log2(||f? − f ||/||f ||∞).

3.1 Inpainting

Inpainting corresponds to the operation of removing pixels from an image

(Φf)(x) =
{

0 if x ∈ Ω,
f(x) if x /∈ Ω,

whereΩ ⊂ {0, . . . ,
√
n−1}2 is the region where the input data has been damaged.

In this case, ΦT = Φ, and one can take a proximity step size µ = 1 so that the
proximal iteration (9) becomes

f (k+1) = ProxλJ(f̃ (k)) where f̃ (k)(x) =
{
f(x) if x ∈ Ω,
f (k)(x) if x /∈ Ω.

Classical methods for inpainting use partial differential equations that propagate
the information from the boundary of Ω to its interior, see for instance [36–39].
Sparsity promoting prior such as (3) in wavelets frames and local cosine bases
have been used to solve the inpainting problem [30, 31].

Our method iteratively updates the optimal graph w(x, y) and iterations
of the algorithm update in parallel all the pixels inside Ω. This is similar to
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the exemplar-based inpainting algorithm of [40] which uses a non-local copying
of patches, however in their framework Ω is filled progressively by propagating
inward from the boundary. The anisotropic diffusion of Tschumperle and Deriche
[39] also progressively builds an adapted operator (parameterized by a tensor
field) but they solve a PDE and not a regularization as we do.

Figure 1 shows some numerical examples of inpainting on images where 80%
of the pixels have been damaged. The wavelets method performs better than
total variation in term of PSNR but tends to introduce some ringing artifact.
Non-local total variation performs better in term of PSNR and is visually more
pleasing since edges are better reconstructed.

Input y Wavelets TV Non local

24.52dB 23.24dB 24.79dB

29.65dB 28.68dB 30.14dB

Fig. 1. Examples of inpainting where Ω occupates 80% of pixels.

3.2 Super-resolution

Super-resolution corresponds to the recovery of a high-definition image from
a filtered and sub-sampled image. It is usually applied to a sequence of images
in video, see the review papers [41, 42]. We consider here a simpler problem
of increasing the resolution of a single still image, which corresponds to the
inversion of the operator

∀ f ∈ Rn, Φf = (f ∗ h) ↓k and ∀ g ∈ Rp, ΦTg = (g ↑k) ∗ h

where p = n/k2, h ∈ Rn is a low-pass filter, ↓k: Rn → Rp is the sub-sampling
operator by a factor k along each axis and ↑k: Rp → Rn corresponds to the
insertion of k − 1 zeros along horizontal and vertical directions.
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Figure 2 shows some graphical results of the three tested super-resolution
methods. The results are similar to those of inpainting, since our method im-
proves over both wavelets and total variation.

Input y Wavelets TV Non local

21.16dB 20.28dB 21.33dB

20.23dB 19.51dB 20.53dB

25.43dB 24.53dB 25.67dB

Fig. 2. Examples of image super-resolution with a down-sampling k = 8. The original
images f are displayed on the left of figure 3.

3.3 Compressive-sampling

Compressive sensing is a new sampling theory that uses a fixed set of linear
measurements together with a non-linear reconstruction [43, 44]. The sensing
operator computes the projection of the data on a finite set of p vectors

Φf = {〈f, ϕi〉}p−1
i=0 ∈ Rp, (11)

where (ϕi)
p−1
i=0 are the rows of Φ.

Compressive sampling theory gives hypotheses on both the input signal f and
the sensing vectors (ϕi)i for this non-uniform sampling process to be invertible.
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In particular, the (ϕi)i must be incoherent with the orthogonal basis (ψm)m used
for the sparsity prior, which is the case with high probability if they are drawn
randomly from unit normed random vectors. Under the additional condition
that f is sparse in an orthogonal basis (ψm)m # {m \ 〈f, ψm〉 6= 0} 6 s then
the optimization of (1) using the energy (3) leads to a recovery with a small
error ||f̄ − f || ≈ |ε| if p = O(s log(n/s)). These results extend to approximately
sparse signals, such as for instance signals that are highly compressible in an
orthogonal basis.

In the numerical tests, we choose the columns of Φ ∈ Rp×m to be independent
random unit normed vectors. Figure 3 shows examples of compressive sampling
reconstructions. The results are slightly above the wavelets method and tend to
be visually more pleasing.

Original f Wavelets TV Non local

24.91dB 26.06dB 26.13dB

25.33dB 24.12dB 25.55dB

Fig. 3. Examples of compressed sensing reconstruction with p = n/8.

Conclusion and Future Work

This paper proposed a new framework for the non-local resolution of linear
inverse problems. The variational minimization computes iteratively an adaptive
non-local graph that enhances the geometric features of the recovered image. Nu-
merical tests show how this method improves over some state of the art methods
for inpainting, super-resolution and compressive sampling. This new method also
open interesting questions concerning the optimization of the non-local graph.
While this paper proposes to adapt the graph using a patch comparison prin-
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ciple, it is important to understand how this adaptation can be re-casted as a
variational minimization.
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