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ABSTRACT minimization [5, 6, 7]. These nonlocal PDEs are linked to
an important category of neighborhood filters which have

][n :IthS _pf]l_perr,] local anfd nonlocall(l |rt:1a3efpr_oceds:smg arz YN shown their efficiency to better preserve fine and repetitive
ied, within the same framework, by defining discrete deri- image structures than local ones [8, 9, 10, 11].

vatives on weighted graphs. These discrete derivatives An alternative methodology to continuous PDEs-based

allow to transcribe continuous partial differential equa- regularization, is to formalize the problem directly in-dis

Eons angdgnergty ;unc:!onalls to paruglh?lf(fjeremﬁ e?/\l;.?r'] crete settings. This is the case for neighborhood filters
Ions and discrete functionals over weighted graphs. YWt picp, are mainly based on discrete weighted Laplacians.

Ithls rpethocliol_ogi/_, we cgnsujt(:]r twci[_gr?dlent—r?zalsed p_rr(;]b— See [12, 13] for a description of these operators in the gen-
em(?_. retngu arl(zja lon Ian_ rrt1_a ima ica Torﬁ 0 O%y' € eral context of graph theory. In particular, it is shown that
gradient-based regufarization framework alows 1o con- Laplacian filtering is equivalent to Markov matrix filter-

nect isotropic and anisotropjeLaplacians diffusions, as ing, and by consequence it is also related to spectral graph

¥vel| as nilghborhood Illterlngh. }N't.h'nl the satr.'ne dlticrtettla filtering. These properties has been used in the context of
ramework, we present morphological operations that al- image denoising by [14, 15]. Another interesting work is

low to recover and to extend well-known PDEs-based andthe digitization of the total variation (TV) and the Rudin-

algebraic operations to nonlocal configurations. Finally, Osher-Fatemi (ROF) model of images [16] onto unwei-
experimental results show the ability and the flexibility of ghted graphs [17, 18]. This discrete formulation has re-

the proposed methodology in the context of image and UN" ceived much less attention than its continuous analog. An

organized data set processing. extension of this model, that uses a normaliz€irichlet
1. INTRODUCTION energy on weighted graphs, is proposed in [19] in the con-
text of semi-supervised learning.

In image processing and computer vision, techniques ba-  We have presented a similar extension in the context
sed on energy minimization and partial differential equa- of image and mesh processing [20, 21, 22]. There exist
tions (PDEs) have shown their efficiency in solving many several advantages of these latter graph-based approaches
important problems, such as smoothing, denoising, inter-In particular, they lead to a family of discrete and semi-
polation and segmentation [1, 2, 3, 4]. discrete diffusion processes baseddraplacians. These

We focus on two categories of problems based on gra-processes, parametrized by the graph structure (topology
dient norms: regularization and mathematical morphol- and geometry) and by the deggeef smoothness, allow to
ogy (MM). Solutions of such problems can be obtained by perform severalfiltering tasks such as smoothing/dengisin
considering the input discrete data (e.g. images, meshesand simplification. Moreover, local and nonlocal image
data sets) as continuous functions defined on a continuousegularizations are formalized within the same framework,
domain, and by designing continuous PDEs whose solu-that corresponds to the transcription of the nonlocal con-
tions are discretized in order to fit with the natural dis- tinuous regularizations proposed in [5, 6]. The unifica-
crete domain. Such PDEs-based methods have the advartion of local and nonlocal gradient-based regularization
tages of better mathematical modeling, connections with is realized by defining explicitly discrete derivatives on
physics and better geometrical approximations. Differen- graphs. These discrete derivatives can be used to tran-
tial operators involved in these PDEs are classically basedscribe other continuous PDEs and energy functionals to
on local derivatives, that reflect local interactions on the partial difference equations (PdEs) and discrete funetion
data. Recently, nonlocal derivatives have been proposed irals over weighted graphs.
the context of image processing to design gradient-based The aim of this paper is twofold. Firstly, the gradient-
regularization functionals and PDEs associated with their based regularization framework presented in [20, 21, 22]



is extended by taking into account a more general regu-respectively by the two following subsets6f
larization functional than the-Dirichlet energy. In par-
ticular, this allows to connect isotropic and anisotropic OTA={ue A° : Jv € A, (u,v) € E},
versions of graph-baseglLaplacians. Secondly, based def. 1)
on the same discrete derivatives, we formulate mathemat- A= {ucA: e A (uv) € B}
ical morphology operators (dilation and erosion) which
can be used to perform several morphological processes
on weighted graphs, such as opening, closing, reconstruc-
tion and leveling. These operators and processes are ana-
log to the ones encountered in continuous PDEs-base
MM [23, 24] and in algebraic MM [25, 26, 27]. In this
latter approach, only algebraic MM operations are con-
sidered on particular graphs (binary, minimum spanning def Z Flu )
tree). Also, both continuous PDEs-based MM and alge-
braic MM are considered in local settings. Our general
graph-based approach has the advantage to handle locathe space of such function is note(V).
and nonlocal configurations within the definition of MM Similarly, we define the spack(FE) of functions de-
operators. fined on the sef’ of edges. Lett, H : £ — R be two
The rest of this paper is organized as follows: Sec- functions that assign a real value to each edge) € E.
tion 2 recalls basic definitions related to graphs and in- The inner product of these functions is defined by:
troduces first and second order operators used in the rest
of the paper. Section 3 presents the proposed regulariza- H)g def 1 Z Z F(u,v) ,v), 3)
tion framework and associated filters. This framework ueV vu
is illustrated in Section 4 on two interpolation problems,
namely semi-supervised image colorization and segmen-
tation. Then Section 5 presents the proposed graph-base
MM operators. Finally, Section 6 shows the application 2.2. Construction of weighted graphs

of the proposed methods to process image partitions and i ) .
unorganized data sets. Functions of the spack(V'), defined in the previous sec-

tion, represent the data to be processed. These functions
2 DIFFERENCE OPERATORS ON GRAPHS can be originally defined on geometric spaces, such as im-
ages and unorganized set of points. Indeed, any discrete
In this section, we recall some basic definitions on graphs,imagel : Q c Z?> — R can be regarded as a func-
and we define first and second order operators which cartion f° : V c Z? — R, whereV is the set of pixels.
be considered as discrete versions of continuous differ-More generally, this is also the case of any unorganized
ential operators. Analog definitions and properties have set of pointl’ C R™, which can be seen as a function
also been used in the context of functional analysis on f°: V c R” — R".

def.

One can note that the boundary W6fcannot be directly
defined by (1). In this special case, it must be given.

The setV of vertices can be regarded as a discrete
pace. Letf,h : V — R be two discrete functions (vec-
ors) that assign a real value to each vertex of the graph.
The L2 inner product of these functions is given by:

ueV

wherev ~ u denotes a vertex connected ta by an edge
8f E.

graphs [28, 29] and semi-supervised learning [19, 13]. There exist several popular methods that transform the
setV, with a given pairwise distance measwe V x
2.1. Preliminary definitions V — R, into a neighborhood graph (or similarity graph).

Constructing such a graph consists in modeling neighbor-
hood relationships between data.

Among the existing graphs, the simplest of them is the
d-neighborhood graph, noteds, where two data:, v €
V' are connected by an edge &fif u(u,v) < §, with

LetG = (V, E,w) be aweighted graplwith a finite sef”
of vertices and a finite séf C V x V of weighted edges.
The weightw,,, of an edgdu, v) € FE is generally defined
from a functionw : V' x V' — R* such that

. 0 > 0 a threshold parameter. We can also quote the
w(,v) = Wuy (u’”)_ € E, minimum spanning tree, the-nearest neighbors graph,
0 otherwise the Delaunay triangulation, or the relative neighborhood

graph, as other possible graph topologies (see [30] for a
Itencodes the similarity between two vertices of the graph. survey on neighborhood graphs used in pattern recogni-
In this paper, graphs are assumed to be connected, undition).
rected, with no self-loops or multiple edges. Under these  In this paper, we consider thieneighborhood graph,

conditions, the weight functiom is symmetric {(u, v) = and a modified version of the-nearest neighbors graph

w(v,u), Y(u,v) € VxV),andw(u,u) = 0forallu € V. since this latter graph is not necessarily directed. Iniorde
Let A C V be a connected subset bf, i.e. for all to make this graph undirected, lehk(u) be the set of

u € A there exists a vertex € A such thatu,v) € E. k-nearest neighbors of the vertex Then, a vertex is

Let A° = V' \ A be the complement od in the graphG. connected ta if u € nnk(v) orv € nnkw). The obtained
Then, the boundary ofl in G is composed of theuter graph is noted:-NNG. We also consider the complete
boundaryand theinner boundaryof A, that are defined graph that we noté&/,



When the functionf® is a discrete imagg® : V cC 2.3. Difference operator and its adjoint
7Z?> — R, the choice of the functiop to construct the

graph can be defined as the Chebyshev distance: All the basic operators considered in this paper are de-
fined from the difference operator or the discrete deriva-
pwu = (z4,y:),v = (x;,y;)) = max{|z; —z;|, [yi—y;|}- tive. There exist several definitions of these operators on

_ o _ ~ graphs[28, 29, 19, 13]. Asin [20], we present here a defi-
By using this distance, the shape of the neighborhood in-nition of the difference operator that allows to retrieve th
volved in thed-neighborhood graph corresponds to the expression of combinatorigtLaplace operators.

gtandard square Win.dow of si(z:lﬁ+ 1)x(26+ 1)..In par- The difference operatorl : H(V) — H(E) of a
ticular, G, is thes-adjacency grid graph. Theadjacency  function f € (V) is the vector of all weighted discrete
grid graph is notedx. derivatives:

When the functionf® : V c R® — R” represents a
discrete set of data, the functipris simply chosen as the df def. ((df) (u, v))(u V)EE

Euclidean distance.

In order to process a given functigt € H(V) the
construction of graphs can also take into account this func-
tion within the distance measure Once the graph has d def. v

. . . ) = VvV Wuyo - ) ) € Ea 4
been constructed, its weights are computed according to a (df)(u, ) Waw (f(0) = f(w), ¥(u,v) @
measure of similarity : V' x V — RT, which satisfies:

where

and

w(u,v) = g(u,v) if (u,0) € E, B f(w) " (df) (u, v) 5)
' 0 otherwise
is thediscrete (partial) derivativef f, with respect to the

This measure can simply be defined as the inverse of theedge(u, v), at a vertex.. One can observe that this deriva-
distance measure; = p~!. Distances between vertices tive share the same properties as the continuous derivative
are estimated by comparing their features. To this aim, of a function defined in the Euclidean space,dgf (v) =
every datax € V is assigned with a feature vector de- -9, f(u), andd, f(u) = 0, and if f(u) = f(v) then
noted byF'(f°,u) € RY. Several choices can be consid- 9, f(u) = 0.

ered for the expression df, depending on the nature of We define also the vector:
the features to be preserved. In the simplest case, one can
consider(f°, u) = f°(u). The weight functions, asso- \df| € (|(df) (u, D)) w)eBs (6)

ciated to a given graph, can naturally incorporate local or

nonlocal features according to the topology of the 9raph-where|(df)(u )| = Waolf(v) — f(u)|. This one is
For instance, one can consider the following weight func- ,sed in the definition of the anisotropieLaplacian (see

tions: Section 2.5).
p(F(£0,0), F(f°,u))2 The adjoint operatord* : H(E) — H(V), of the
91(u, v)=exp (— 2 ) ’ difference operatad is defined by:

gg(u7v)=(p(F(fO,u),F(fo,v))+e)_1, €>07 6_>Oa <df, H>E — <f, d*H>V,

whereo > 0 controls the feature similarity and: V' x ]

V — RT is a distance measure to be defined next. forall f € (V) andH e H(E). By using the ex-
When f° € H(V) is an image, an important feature Pressions (2) and (3), it is easy to deduce the following

vector is provided by image patches, iB(f°, u) is the expression ofl* at each vertex of the graph (see [13, 22]):

values off in a square window of siz@k+1) x (2k+1),

centered at the vertex, which we noteF, (f°,u). This (d*F)(u) = % Z VWay (F(v,u) — F(u,v)).  (7)

feature vector has been proposed in the context of texture v~

synthesis [31], and then used in the context of image pro-

cessing (see [11, 7, 32, 6, 5] and references therein). The ~We introduce also two other difference operators that

distance functiorp associated with this feature vector is Constitute the basis of the morphological operators defined

given by: in Section 5. They are based on the difference operator
and on the classical maximum (respectively minimum)
p(Fr(f° ), Fe(f°v)) = operator as:
k k
S K(@y)llfOu+ (@) O + ()3, (d* f)(u,v) € max (0, (df)(u,v)), and .
r=—ky=—k

(d™f)(u,v) % in (0, (df)(u,v)).

where K is a Gaussian kernel of a given standard devi-

ation. This latter can be replaced by the Chebyshev dis-As before, the corresponding partial derivatives are re-
tance between the position of pixels. spectively given byt f(u) andd; f(u).



2.4. Gradients and their norms

As in the Euclidean space, one can define the gradien

of a functionf € H(V) at each vertexx € V as the
vector of all partial derivatives, with respect to the set of
edgequ,v) € E:

(V1) () B (00 f (1)) uvye -

In the sequel, we use tHe&’-norm of this vector:

(9)

1
p

||(vf)(u)|p:<Zw§v|f(v)_f(u)|p> , (10)

v~vUu

as well as its infinite norm:

1V £)(0)lo = masx (ol £ (0) = ().

It is a nonlinear operator fgsr£2. An interesting case is

tprovided byp=1, which corresponds to treombinatorial

(mean) curvaturef the functionf over the graph (see for
instance [18] for a similar definition on unweighted graphs
in the context of image restoration).

We now define anothes-Laplacian, which is based
on the vectorldf|. The (anisotropic)p-Laplacian A7 :
H(V) — H(V) is defined by:

AL f = d*(|df [P=2df ).

Then, from (7) and (4), we obtain tli®mbinatorialver-
sion of theanisotropic p-Laplacianwhich is expressed at
each vertexs € V by (see [33] for more details):

(AL f)(u) = Z wi|f(u) — FO)P2(F(u) — £(v)).
o (13)

As before, one can define two other gradients (and As A;, this operator is nonlinear jf#2. If p=2, bothp-

their associated norms) based on the partial derivafive’s
andd~ f, which we note respectiveiy  andV ~. For in-
stance, we have the following norms far":

v~vU

IV A @l = <Z win (max(0, f(v) - f(U)))”> ;
IV (w)]loo = max (y/wuy max(0, f(v) = f(u))).

2.5. Second order operators

Laplacians corresponds to the Laplacian. It can be shown
that they can be linked within a same operator defined by
d*(|df|P=2||V f||5~2df). In the same spirit, one can also
define higher order operators.

3. REGULARIZATION MODELS AND
DIFFUSION PROCESSES

In this section, we propose a variational model to regu-
larize functions defined on the vertices of graphs, and the
discrete diffusion processes associated with it.

One of the most important second order operator on graphs

is the Laplacian, which has several well-established ex-

pressions (see [12, 13] for a complete study). All the ex-
pressions can be derived from the following definition.
TheLaplacianA : H(V) — H(V) is the linear oper-

ator defined by:

Af % g df.

By using expressions (7) and (4), we retrieve toenbi-
natorial Laplacian(or unnormalized Laplacianwhich is
expressed at each vertexe V' by:

(Af) () = wuo(f(u) = f(v)),

v~Uu

= f(u) Z Wyv — Z wuvf(v)-

v~Uu v~u

(11)

An extension of the Laplacian is ti{gsotropic) p-La-
placian Al : H(V) — H(V) defined forp € (0, +00)

by:

i pdef. -

AL = d(IV I df).

Again by using (7) and (4), we get ttembinatorialver-
sion of thep-Laplacian which is expressed at each ver-
texu € V by (see [22] for more details):

(AL (w) = 3k () = (),
= Jwa (1) @I+ ITHE)IE) -
(12)

with 4./

3.1. Problem formulation and equations on graphs

Let f° € H(V) be a given function defined on the vertices
of a weighted grapliz = (V, E,w). In a given context,
this function represents an observation of a clean function
h € H(V') corrupted by an additive noisec H (V) such
that f = h 4 n.

To recover the uncorrupted functidnthe processing
task is to remove the noisefrom f°. A commonly used
method is to seek for a functiohe H(V'), which is reg-
ular enough orG, and also close enough #d. This can
be formalized by the minimization of an energy functional
which involves a regularization term (or penalty term) plus
an approximation one (or fitting term). In this paper, we
consider the following model:

h~argmin J(f) + 3[lf — f°13,  (14)
fV—=R
where J(f) E 3" 6 (1(V)(@W)],) (15)

ueV

is a gradient-based functional, ahd= R is a regulariza-
tion parameter, called Lagrange multiplier, that controls
the trade-off between the penalty term and the fitting term.
The functiony(-) is a kernel that penalizes large variations
of f in the neighborhood of each vertex. Several penalty
kernels have been proposed in literature, in different sit-
uations. Among them, we can quatés) = s> (known

in the context of Tikhonov regularization [34](s) = s



(total variation [16, 17])gp(s) = Vs + €2 — € (regular-
ized total variation [16, 17]), ang(s) = 72 log(1+s2/r?)
(nonlinear diffusion [35]).

To get the solution of (14), we consider the following
system of equations (Euler-Lagrange equation):

aJ(f) )
e AU

where the first term denotes the variation of (15) with re-
specttof at a vertex:. Itis easy to show that this variation
is equal to:

9J(f) 15 06 (I(THW],) . 96 (I(TH)(®)llp)
afw) 0f(u) ﬂwzu af (u)

& (17 ) l,) LD e

fou) =0, YueV,  (16)

9F(w)
=308 (1) AT
ST Al (o) — F@)PE(f )~ f(0)),
where
atT = uk, (cb’ U@HWI) | ¢ (II(Vf)(v)IIp)) |
VAT IVHIE

where f (-,
timet > 0.

3.3. Neighborhood filters

t) is the parametrization of by an artificial

This section describes a second approach to get the solu-
tion of (16), that is rewritten as:

</\+Za¢pf

v~UY

+Za¢Pf

v~Uu

f(U)Ip_2> f(u)
— F@)P72f(v) = AfO(u)

Since this is a nonlinear system, an interesting approxi-
mate solution is provided by the linearized Gauss-Jacobi
iterative algorithm, an iteration of which is decomposed
in the following two steps:

ﬁl‘f{}p’f—Za‘z’qu (v, t

AfO(u) + 30,00 B ff(v,t)
A+ ZUGV 57“’ d

— flu,t)[P72, ¥(u,v) € E,

Flut+1) =

, Yu e V.

(20)
This describes a family of neighborhood filters. Indeed, at
each iteration, the new value ¢gfat a vertexu depends
on two quantities: the initial valug® (u), and a weighted

One can observe that this expression has the form of anaverage of the filtered values ¢fin the neighborhood

def.

operatorA, : H(V) — H(V), Ay (17) closely

of u. As in Section 3.2, the choice of the regularization

related to the second order operators introduced in Secfarameters and the choice of the graph allow to retrieve

tion 2.5. Indeed, the-Laplacian operatoNZ is equal
to (17) ifp = 2 andg(s) = s?, and theg-LaplacianAf is
equal to (17) ifp = g andg(s) = s?.

In most cases (values gf, the system (16) is nonlin-
ear, and thus it is difficult to find a close solution. Approx-
imated solutions are given in the following sections. Also,
the regularization functional must be convex to ensure
that the solution of (16) is also the solution of (14), which
depends orp andp.

3.2. Diffusion processes

The first method, that is considered to get the solution

of (16), is based on the gradient descent of (16):
at.f(ua t) = _(A¢f)(ua t)+)\(f0(u)_f(u7t))a Yu € ‘/7

(18)
with the initial conditiond,—of=f°. This describes a
family of fitted diffusion flows on weighted graphs. This

family includes and extends several well-known flows in-

and to extend several well-known filters proposed in the
context of image smoothing and denoising.
In particular, forp=2 and¢(s)=1s2, iteration (20) is
rewritten as:
Afo(’u) + ZUNU wuvf(’L)? t)
AW '
Without being exhaustive, whex = 0 (no fitting term),

one iteration of (21) corresponds to the following filters:
- Gaussian filter if the weight function is

Wyy = €XP (—

- o-filter [8, 9] if
Wy = exp (_ 1O (u)

Jlut+1) =

(21)

[[u — ]l

)
()13

_fo
o2 )’

tensively used in image processing and computer graph-

ics. Most of them are formulated without the fitting term
(A=0), and has been analyzed by [2] in the context of im-
age processing. In particular, for the regularization kérn
#(s)=s% andp=2, we obtain Laplacian-based diffusion,
and if ¢(s) = s it corresponds to mean curvature-based
diffusion.

A classical iterative algorithm to get the solution of (18)
atatimet + 1, is the Euler one. An iteration of this algo-
rithm is given by:

flu,t+1) = f(u,t) + At O f(u,t), YueV, (19)

- SUSAN [36] or bilateral [10] filters if

- Nonlocal means filter [11] ifv=gs.
While iterated versions of these three latter filters are re-

b= 0 g U220 O
(22)

Wyp = €XP

'lated to nonlinear diffusion (since the weights depend on

the filtered functionf, they need to be updated at each it-
eration), several iterations of (21) describe a linearrfilte
that is related to Laplacian smoothing (Section 3.2).



(d) Go, unweighted (efFs, w = (22), (f Gs,w = g2, F5(f°, ")

_-__;\\ﬂ |'| | Ill|||| ’

(b) Go, unweighted

—

0
©Go,w=g1,F] =f°

Figure 1. Local and nonlocal image smoothing. (a) The ihitimge f° is regularized until convergence of the filter (20),
with p=1, ¢(s)=s, p=2, and\ = 0.01: (b) Discrete TV regularization. (c) Discrete weighted-T&gularization. Col-
umns (d), (e) and (f): Behavior of the regularization wah0 iterations of (20)\ = 0, ¢(s) = s%, p = 2. On Gy, it
corresponds to the unweighted Laplacian smoothing fer2 and to the digital TV filter foy = 1. OnGg with w=(22),

it is the iterative bilateral filter (without updating the ights) forqg = 2. OnGg with w = go, it is the iterative nonlocal
means filter (without updating the weights). The other casashe considered as extensions of these filters by vagying

Another particular case of the proposed neighborhoodgiven in [21, 22] in the context ofimage and mesh smooth-
filters is the TV digital filter [18], which is obtained for ing/denoising.
o(s)=s, p=2, andw,,,=1 for all (u,v) € E. We have In the sequel, the family of filters presented in this sec-
extended this filter to weighted graphs andi{() = s¢ tion are the one that is used in the applications. More gen-
in [20, 21, 22]. Figures 1(a) to 1(c) illustrate the diffecen  erally, to process vector-valued functiofis V' — R7,
between the weighted and unweighted cases in the contex{f = (f;)i=1,...», We use the same filter but the norm of
of image smoothing on the grapgh,. We can observe that the gradient, in the coefficient?;”/, is replaced by its
for the same value of, using a weight function helps to  n-dimensional version:
preserve image discontinuities.

The behavior of the regularization fpr= 2, ¢(s) = v def. Vi p|
s, q € (0,2], is illustrated in Figures 1(d) to 1(f) for sev- VDl 1:12: NI

eral values ofy, several graph structures aid= 0. The

number of iterations is the same in all the cas&¥).

We can do two principal observations. As the size of the , REGULARIZATION-BASED INTERPOLATION
neighborhood increases, sharp edges and image redundan-

cies are better preserved. This is also the case for the usénimage processing, several problems such image inpaint-
of nonlocal weights based on patches. Whea 1 and ing, super-resolution, image colorization or semi-superv
particularly wheng; — 0, the regularization behaves like sed segmentation can be interpreted as interpolation prob-
a simplification procedure. This last observation is de- lems. Given a data set where some data are missing, inter-
picted in the first row of Figure 2, where we can see the polation consists in predicting missing data from existing
effect of the structure of the graph. More examples are ones.

n

yeeay



Figure 2. Results presented in Figure 1o« 1 and ren-
dered here in false colors (each color corresponds to a gray
value). First line represents part® row of Figure 1 and
second line represents Partséf row of Figure 1. We can
observe the relation between the size of the neighborhood (c) Local (d) Nonlocal

and the leveling of the image. Figure 3. Local versus nonlocal colorization withis) =
s,p=2and), = 0.01
Formally, given a knowing functiofi® € H(V°) de-
fined onV? c V, interpolation problem consists in pre- Nance:

dicting a functionf € H(V) according tof°. These s 1 if ue v
problems can be formulated by considering the discrete  f(u) = {(fz (w/f (u))i:RQB “Ero
regularization model (14): (0,0,0) otherwise.

. Aw) 0/ o The colorization process is performed according to Equa-
argmin T+ Y 22 (f(w) = fPw)®  (23)  tion (23), where\, — 0.01 ensures that the original color
’ u€vV scribbles can change during the process. At convergence
of the process, the final function is definedfasV — R3

where) : V — Ris a function of the form: and final colors are obtained by

(24) FHw) (filu,t — +09))i—r.c.B

Figures 3(c) and 3(d) show the obtained colorization, re-
In this section, we focus on two categories of interpo- spectively in local and nonlocal schemes. The graph asso-
lation problems: the semi-supervised image colorization ciated with the local processing is the graphassociated
and segmentation. with the weight functions = g; whereF(f!,u) = f'(u)

for a vertexu. For the nonlocal colorization, the asso-
Image colorization. Colorization is the process of adding ciated graph is the grapfi; associated with the weight
colors to monochrome images and is usually made by handunctionw = g; whereF,(f!, ) is used as a feature vec-
by an expert. Recently, several methods have been pro+or.
posed for colorization [37, 38] that less require intensive One can view the benefits of nonlocal processing as
manual efforts. These technigques colorize the image based@ompared to local one: the eyes and several areas of the
on the user’s input color scribbles and are mainly based onbib are not properly colored and have diffused over straight
a diffusion process. However, most of these diffusion pro- edges. On the opposite, nonlocal colorization has success-
cesses only use local pixel interactions that cannot prop-fully colored these areas thanks to its ability to discover
erly describe complex structures expressed by nonlocal in-similar textures and fine details.
teractions. We propose to address this problem within our
framework and we propose to introduce nonlocal config- Semi-supervised image segmentatiorNumerous auto-
urations in colorization processes [39]. matic segmentation schemes have been proposed in litera-

Figure 3 shows a comparison between local and non-ture and they have shown their efficiency. But sometimes,

local colorization. Figure 3(a) shows a grayscale image automatic segmentation results are not accurate when im-
ft:V — R, on which a user provides an image of color ages are much more complex. Meanwhile, recent interac-
scribblesf® : Vo ¢ V — R3? (Figure 3(b)). The image tive image segmentation approaches have been proposed.
color scribbles defines a mapping from the vertices to a They reformulate image segmentation into semi-supervi-
vector of RG B color channelsy*(u) = (ff(u))i=r.c.B- sed classification by label propagation strategies [4Q, 41]
From these functions, one computgs: V' — R3 that Other applications of these label diffusion methods can be
defines a mapping from the vertices to a vector of chromi- found in [19, 42]. We propose to address this learning

)\()dgf. Ay fueVO
“=13 0 otherwise.



components labeling can be performed on classified ele-
ments.

Figure 4 shows the behavior of our semi-supervised
image segmentation method for local and nonlocal con-
figurations, graph structures apdalues.

Figure 4(b) shows original image with initial labels
superimposed. Figures 4(c) and 4(e) show the final seg-
mentation performed on the gragh, with the weight
functionw = ¢;. Figure 4(c) is obtained with = 2
and Figure 4(e) witp = 1. In the latter case, we use
the anisotropic version of our regularization. Both result
show a suitable segmentation. When we use nonlocal con-
figuration (Figure 4(d)), the segmentation captures more
fine image structures and details. The associated graph for
(©) Local = 2, é(s) — s2 and(d) Nonlocal patch-based (= 2, this nonlocal processing is a graph with aweight func-

G1) é(s) = s2 andGa) tion w = g; where the feature vectdr,(f°, u) is used.

In these three latter segmentations, one can note that the
eere SR TN, boundaries are not smooth. By using a modified nonlocal
configuration graph, Figure 4(f) shows a better segmen-
tation where the boundaries are more smoother. In this
case, we use a graph definedl&ésNNG U G;. The near-
est neighbors are selected with a patch distance where the
feature vector i (f9, ) within a 15x 15 neighborhood

(€) Local p = 1, ¢(s) = s and(f) Nonlocal patch-basedp(= 2, search window. Finally, the weight function associated
G1) #(s) = s2 and 16-NNG U G4 with this graph isw = 1.
graph)

5. MATHEMATICAL MORPHOLOGY

Figure 4. Local versus nonlocal patch-based image semi- ) )
supervised segmentation. All the result images were | he two fundamental operators in Mathematical Morphol-

whitened in order to accentuate the user labels and the®9Y are dilation and erosion. They form the basis of many
segmented boundary, other morphological processes such as opening, closing,

reconstruction, leveling, etc [26].
These two operations are commonly defined in terms

problem as an interpolation problem within our regular- of algebraic set operators but alternative formulations, b
ization framework. sed on PDEs was also proposed by [23, 24] and references

The semi-supervised clustering of the $&tonsists  therein. For a unit dis@ = {z € R? : ||z||, < 1},
in grouping the seV” into & classes where the number PDEs-based methods generate flat dilation and erosion of
k of classes is given. For this, the détis composed of g scalar functiory® : Q@ ¢ R? — R by B with the fol-
labeled data sets and unlabeled ones. The objective is thefowing diffusion equationsd;(f) = d;f = +|Vf| and
to estimate the unlabeled data from labeled onesc s e(f) = 0 f = —|Vf|, whereV = (dx,0y)T is the spa-
the set of vertices which belong to thié class. The set tial gradient operator andl is the transformed version of
VO={¢;}i=1,... is the initial set of labeled data, and the f0. |f one assumes that the evolution at timeD is ini-
initial unlabeled data is the s&t\ V°. This is equivalent tialized with f(z,y,0) = fO(z,y), solution of f(x,y,t)

to considerk label functionsf?:V —R such as at time¢>0 provides dilation (with the plus sign) or ero-
) o 0 sion (with the minus sign) within a disc of radiusThese
£Ou) = {1 ifue G withi =1,....k,VeeV PDESs produce continuous scale morphology and have the
0 otherwise, advantages of offering excellent results for non-digjtall
scalable structuring elements whose shapes cannot be cor-
where eacly?, withi = 1,..., k, corresponds to a given  rectly represented on a discrete grid: allowing sub-pixel

class. Starting from the labeled data (iffts), the vertex  accuracy and can be adaptive by introducing a local speed
clustering is accomplished byregularizations defined in  ayglution term [43].
(23) where), = +oo. At convergence of the processes, In this section, we present our morphological frame-
one can estimate the class membership probabilities andyqrk pased on discrete derivatives and PdEs. The pro-
assign to a vertex. the most plausible one. For alle posed formulation extends local PDEs-based approaches
L,...,k, we have to nonlocal configuration in context of image processing.

o5 In the sequel, we introduce our dilation and erosion pro-

Mg?lax{ fi(u,t — +o0)/ Z filu,t — +°O)} - (25) cesses based on previously defined discrete operators, Then
! links with well-known MM morphology methods are dis-

To obtain a final image segmentation, a connected imagecussed and we show that formulations are special cases of



our methodology. Finally experiments in image process-

Dilation and erosion processes A simple variational

ing show the benefits of weighted and nonlocal operationsdefinition of dilation applied tof* can be interpreted as
for image morphological processing that better preservemaximizing a surface gain proportional to the gradient

edges, fine and repetitive image structures.
5.1. Dilatation and erosion processes

In this section, we define the discrete analogue of the con-

tinuous PDEs-based dilation and erosion formulations. One

wants to obtained the two following dilation and erosion
processes over graphs:

Spi(f) = o _ +|Iv*£||. and
3} ’ (26)
eil(f) =5 ==V 1,

where||.||, corresponds to th&é”-norm.

norm+||(V f%)(u
minimization proportional t(}||(Vf’“)(u)||p.

Dilation of f* on A* can be expressed by the follow-
ing evolution equation:

0f*(u)/ot = +[[(V* ) (w)

)Hp. Similarly, erosion is a surface gain

p 3

whereH(Vf’“)(u)Hp is reduced tq)](v’“f’“)(u)Hp foru
0+ A¥ by using Equations (27) and (28). Similarly erosion
process can be expressed by:

0f*(u)/0t = —||(V=fO) (W), -

Finally, by extending these two processes for all the

To establish these two morphological processes, welevels of f, we can obtain the two processes expressed

use on the one hand, the decomposition of a funcfion
V — R into its level setsf* = H(f — k) whereH is

the Heaviside function and, on the other hand, the graph
boundaries notion defined in (1). Then, one can interpret

dilation process oved as a growth process that adds ver-
tices fromd+ A to A. By duality, erosion process can be

interpreted over as a contraction process that removes
vertices fromo~ A.

One can demonstrate, the relation between the grap
boundary and the gradient norm of the level set function
at vertexu € V:

v+ @], and|[v= ()],
by studying cases whetec A* oru ¢ A* and similarly
for v ~ u (see [44] for more details). Then, for any level
setf*, theLP-norm (with0 < p < +o00) of the directional
gradientﬁW*f’“(u)Hp andHV*fk(u)Hp ata vertexu €

V are
1/p
V@, = Y. whl?]  xovar(w)and
v~u,vEAFR
1/p
V= F ), = whl? ] Xo-ar(u)
P
v~u,veEAFR

(27)
wherey : V — {0,1} is the indicator function and* C
V is the set such thagt* = y 4.

Directly from (27) and by using the inner and outer
boundarie® ™ A* andd~ A* (see [44] for the proof), one
obtains the following relation or any level sgt with 0 <
p < +oo!

@], = |7 M@, + (7w,
(28)

Equations (27) and (28) only consider ti&-norm
when( < p < +oco. For the case where = oo one can
demonstrate and obtain same results by ugiffgnorms
expressions.

by Equations (26) and parametrizedppgndw, over any

weighted grapltz = (V, E, w):
0
bpelh) = 2 = 7], and
0
pilf) = = 7],

5.2. Dilation aIgorithm

I']To solve the partial difference equations of dilation and

erosion processes, on the contrary to the PDEs case, no
spatial discretization is needed thanks to derivatives di-
rectly expressed in a discrete form. Then, one obtains the
general iterative scheme for dilation, at time- 1, for all
ueV,

FHHw) = £ ()

With the corresponding values, the iterative scheme be-
comes fol0 < p < +o0o,

A w) = fHu)+

+ AV @), (29)

s (8 it 0 r1r)
o (30)
and forp = oo

S () = fHu)+

(VT max(0, £(v) = f()) ) .

(31)
where f° € H(V) is the initial function defined on the
graph verticesf(©) (u) = f°(u) is the initial condition
the iteration step, andt is the time discretization. The
extension to erosion process case can be established by
using the corresponding gradievit f.

At max

v~YuU

5.3. Related schemes in image processing

With an adapted graph structure and an appropriated wei-
ght function, our propose morphological framework re-
covers well-known morphological methods in image pro-
cessing. For clarity, we only consider dilation but same
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(a) Original (b) Localw =1 (c) Local weighted  (d) Nonlocal (e) Localw =1 (f) Local weighted  (g) Nonlocal

Figure 5. Image morphological processing with differeramr topologies and weight functions. First row: dilation.
Second row: erosion.

remarks can be obtained for erosion. ing. The examples illustrate the flexibility and the abil-
ity of our method to perform different morphological pro-

Osher-Sethian discretization schemeWhenp = 2 and cessing within a same formulation.

the weight function is constantu(= 1), Equation (30)

recovers the exact Osher-Sethian first order upwind dis-Image morphological processingFigure 5 shows a com-

cretization scheme [45] for a grayscale image defined asparison between local unweighted, local weighted and non-

f°: VvV c R? — R. If the associated graph &, then, local patch-based dilation and erosion. The graph associ-
with Equation (30) and the following proper@max(o, a— ated with local processing is thieadjacency grid graph
b))2 = (min(0,b — a)){ we have: Gy, where for the weighted case, the weight function is
- , w = g1 with F(f° u) = f°u). For the nonlocal case,
[ (@y) = [f(2,y) the graph ig73 associated with the weight function =
i 0
At in (0. ft 1 2 g1 Where the feature vector i&; (f°,u). These results
+ ((mm( f@y) - fia ’y))) + show that by using non constant weights, the proposed di-
(max (o, flz+1,y) - ft(%y)))z + lation and erosion better preserve edges as compared to
) . . 9 classical approaches. When a nonlocal configuration is
(min (0, f*(z,y) — f(2z.y = 1)))" + used fine structures and repetitive elements are better pre-

N3 served.
(max (0, /' (z,y + 1) = f'(z.)))*)
(32) Morphological processing for textured images Fig-
where vertexu € V and its neighborhood ~ v are re- ure 6 illustrates one of the novelties of our framework, the
placed by their spatial image coordinatesy). application of nonlocal approach for morphological pro-
It corresponds exactly to the Osher and Sethian dis-cessing. Figure 6 shows a comparison between local and
cretization scheme [45] of the PDEs-based dilation pro- nonlocal closing. Closing can be defined as a serial com-
cess. Using this expression, the proposed morphologicalposition of dilation §) and erosiond) operations. The
framework can perform a sub-pixel approximation and re- closing of a functionf is ¢ (6(f)). Figure 6 shows clos-
covers the notion of structuring elements [23]. For a unit ing of an corrupted image (Figure 6(b)) from the initial
ball B = {z € R?: ||z, < 1}, if we consider the three  Figure 6(a) with a Gaussian noise ®f= 20. The local
special cases qf = 1,2, co, one obtains an approxima- closing is performed with the gragly, and the associated
tion of a square, circle and diamond. weight functionw = 1. For the nonlocal morphological
closing, the associated graphli&NNG U G (same con-
Algebraic formulation . If we consider the neighborhood  struction is defined in Figure 4(f)) where the feature vec-
of a vertexu € V' with the vertex itself and by studying toris F3(f°, u) and the patch distance is computed within
the sign of the quantity*(v) — f*(u); whenp = oo, a 21x21 search window. This example clearly demon-
with a constant time discretization (i.eAt = 1) and a strates the efficiency of nonlocal patch-based methods to
constant weight function{ = 1), Equation (31) recovers  better preserve frequent features during the morpholbgica

the algebraic formulation of dilation over graphs. process. Contrary to local ones that destroy fine structures
£ () = max(f1(v)) . (33) and repetitive elements.
v~ uU

In this case, the structuring element is provided by the 6. DATA PROCESSING ON ARBITRARY GRAPH

graph structure and the neighborhood of the vertices. ForOur regularization and MM frameworks work on graphs
instance, if we consider&adjacency image grid graph, it  of arbitrary topology. One of the advantages is that we
is equivalent to a dilation by a square structuring element can use our methodology on any discrete data that can be
of size3x3. represented by a weighted graph. As a result, our formula-
tion provides a natural extension of PDEs-based methods
to process any discrete data even if they are defined in a
The following experimentations show the potentialities of high dimensional domain.

the proposed morphological framework forimage process-  In the sequel, through different experimentations and

5.4. Experimentations in image processing
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(a) Original  (b) Corrupted (c) Local (d) Nonlocal (a) Original  (b) Partition §8% of (c) Reconstructed im-
reduction) age

Figure 6. Local versus nonlocal patch-based texture im-pg

age closing. First row: original and corrupted image with
Gaussian noises(= 20). Second row: local and nonlocal l

closing results (See text for more details).

(d) Original +(e) t = 50 (11 (f) Original +(Q)t = 5(< 1
abels sec.) Labels sec.)

%idawid

applications in regularization and morphological proeess -
ing, we show the potentialities of our approaches to pro- P¢
cess unorganized high dimensional data set. Moreover,
we also show that another graph-based image representa

tion can be used instead of usual pixel-based grid graph e
leading to fast image processing. (h) Original +() t = 2 (< 1() Original +K) t = 2 (< 1
The regularization process used in this section is the Labels sec.) Labels sec.)
neighborhood filter of Section 3.3 wifh=2 and¢(s)=s>
i.e. Laplacian smoothing. Figure 7. Semi-supervised image segmentation pth,
A=1, t iterations for different graph structures and user
6.1. Fastimage processing on partitions input strokes. (a), (b) and (c): originalq2x181 pix-

If we consider that image pixels are not the only rele- éls)’ partition, reconstructed images.  (d), (f), (h) and

| h b b ): user input labels. (e), (9), (i) and (k): original im-
vant elements, then more abstract structures can be use ge with the obtained segmented regions superimposed:
such as image regions or superpixels [46]. We suggest

topl d I d bound
to work directly with reduced versions of images: image cytoplasm (red), nuclei (green) and regions boundaries

i Constructing i i be vi d (black); the segmentation is performed with the specified
partitions. £onstructing image partitions can be VIeWed jq ation step$ and the corresponding computation time.

as an image simplification or a data reduction process. To OThe i images (e), (@), (i) and (k) are respectively obtained
obtain such image partitions, any well known image pre- from label images (d), (f), (h) and (j). Graph structures

segmentation can be performed such as watershed techused to obtain results ()1,(g): RAG. (i) and (K)G.a
niques. DRSS ’

In this paper, we use generalized Voronoi diagrams
(for more details see [47]). One of the advantages of this Fast semi-supervised image segmentatiofmage semi-
method is the low computing time to obtain a complete Supervised segmentation are usually based on label diffu-
image partition. Indeed, the amortized time complexity of Sion strategies on grid graphs [40, 41], such as the one
a such method i€)(E+V1ogV) with Dikjstra algorithm presented in Section 4. The drawback of this method is
and Fibonacci heap structure. Then, the obtained parti-that when the considered image is large, the label propa-
tion can be associated with any graph topology such asgation method is inefficient due to the great mass of data
Region Adjacency Graph (RAG), proximity graphs or a t0 analyze. To avoid this computational problem, we pro-
fully connected graph({.) where vertices represent im-  POse to use image partitions [48].
age regions. The function to be processed on such graphs Figure 7 shows the proposed semi-supervised cluster-
are defined at each vertex bf as the mean value of its  ing method applying to segment cytological images into
associated region. 3 classes (nuclei, cytoplasm and background). This ex-
In the sequel, we show that with this image representa-periment also show how partitions in addition of nonlo-
tion, one obtains similar processing behaviors than pixel- cal scheme can provide an efficient image segmentation
based processing, but with a drastically decreasing com-method. To this aim, the following experiment compares
putation complexity. Due to the low computing time to on the one hand, computation time and the segmentation
create an image partition, it can be neglected in the fol- results between a pixel-based grid graph, and two region-
lowing experiments (e.g. to obtain partitions of an image based proximity graphs (RAG and fully connected graph);
of size256x256 take less than sec. on a modern com- and one the other hand, it shows the robustness of our ap-
puter?). proach regarding to initial user input labels. Figure 7¢e) i
the semi-supervised segmentation result obtained from la-

bels of Figure 7(d) and astadjacency grid graph,) as-
1All the results are obtained with a standard Linux computer g ( ) ) yonag ph:{)

equipped with quadr2.4 GHz Intel Xeon processors ands GB of sociated with the initial image (Flgure 7(a.))' In thl.s case,
RAM, and the mentioned computing times include the grapstzan- one can observe the number and the precise location of the

tion itself. initial labels, in particular, the necessary labels betwee




the two cells. Figure 7(b) is a partition of Figure 7(a). One
can observe the important rate of reductié®%) in term

of graph vertices. Figure7(c) is a reconstructed imagg
from the partition where the pixel values of each region
of the partition are replaced by the mean pixel value of
its regions. With this simplified version, we construct two

proximity graphs: the RAG and the fully connected graph. gk S
Figure 7(g) shows the segmentation result obtain from the (a) Original (b) Partition  (c) Reconstructed im-
RAG with the same initial labels (Figure 7(f)) as in the age

grid graph case. We can observe that the two results (Fig
ures 7(g) and 7(e)) are similar but in the RAG-based seg
mentation case, the computation time is significantly re-
duced. Figures7(i) and 7(k) show the segmentation resul
obtained from the fully connected graph. Using this graph
topology has several advantages. First, the graph contai
all the image information within the edge weights. Sec-
ond, a minimal number of labels is needed to obtain cor-
rect results as compared to the case of the grid-graph o
of the RAG. Third, this nonlocal approach has the impor-
tant property to quickly label objects in the same class,
even if they are not spatially adjacent or close. In Fig-
ures 7(i) and 7(k), the two main nuclei and cytoplasm are
segmented even if they have no initially been labeled, and
the two pieces of cytoplasm on the left and the piece of
cells on the top-left corner of the image are also found.

Finally, the robustness of our approach is shown by two Figure 8. Fast morphological image processing. (d): im-

similar results (Figures 7(i) and 7(k)) with two different age pixel based grid graph processing. (e): image parti-
user input labels (Figures 7(h) and 7(j)). tions based RAG processing.

(d) dilation, erosion, closing o6’y with w=g; and F’ fO =

(e) dilation, erosion, closing on the RAG with=g; and F'(f°,-)=f

Fast image morphological processing Figure 8 com- A A Aae At it

pares the behavior of ourimage morphological processing#44 o _ .

between pixel-based and partitions-based graphs. (@) Original USPS digit 1 data set

. . " . V4

Figure 8(b) shows an image patrtition obtained from &

the initial image of Figure 8(a), and Figure 8(b) is a recon- S

structed image from the partition. The initial image has . (b) Regularization withh = 0.5

size 256 %256, and the_parfutlon is a S|gn|_f|cant reduced

version 82% of reduction in term of vertices) as com- o RS =

pared to the original one. Figures 8(d) and 8(e) show di-_ () Regularization witt\ = 0.01

lation, erosion and closing respectively performed on the PRI PP A A AP AP AP PP RS AP AR A

4-adjacency grid graph associated to the original |mage & SRR
and on the RAG associated to the partition. Both cases (d) Regularization withh = 0
exhibit similar behaviors while the case of RAG reduces Figure 9. USPS data set regularization. (b), (c) and (d):

drastically the computation complexity. This is due to the results obtained with the correspondingarameter.
reduced number of vertices to consider.

hand the UCI Wine database. USPS database contains
grayscale handwritten digit images scanned from digit

In this section, we show one of the advantages of our for-to 9 where each image is of sizx16 pixels. Wine
mulation, the application of regularization and mathemat- database contairsclasses of samples i-dimensions

ical morphology on high dimensional unorganized sets of and for each class9, 71, and48 samples. Coming from
data. In the sequel, different experiments show the poten-the real-world, the data sets naturally contain noise, and
tialities of our methodology to smooth discrete data with one wants to recover a denoised sub-data sets. To perform
regularization or mathematical morphology, or to classify this task, we use the proposed regularization process. Fig-

6.2. Processing of high dimensional unorganized data

data set by semi-supervised clustering. ures 9 and 10 show the regularization results obtain re-
spectively for the USPS and Wine data sets.
Unorganized data set regularization In the following To perform regularization of USPS data set shown in

experiments, we consider two real-world high dimensional Figure 9, we use a randomly subsampled s&006fsam-
data set. On the one hand, the United States Postal Serples from the original 1 digit set. Figure 9(a) shows the
vice (USPS) handwritten digits database and, on the othertest data set. The fully connected gragh, is built with
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Figure 10. UCI Wine data set regularization wjik-2,
A=0, andt=1. For simplicity, only Malic Acid, Ash, and
Ash Alkalinity features pairs projections are shown.

the weight functionv=g,. Each vertex of the graph cor-
responds to an image sample and is described £iy6a
dimensionsR16*16) feature vector where each feature is 0
a pixel grayscale value. Figure 9 shows several regulariza-
tion results. One can note in these figures, that all sampledigure 11.  USPS image retrieval based on semi-
are strongly transformed, in particular when the fidelity Supervised clustering. (a), (c), (e) and (g): user input
term A=0 (Figure 9(d)). All samples become uniformly duery (unlabeled point). (b), (d), (f) and (h): 50 first ob-
identical and converge to an artificial mean digit sample. tained results for the corresponding query. (i): sample
When )\750, the Samples are smoothed but the more dis- of the initial labeled data Set, Original one conta#¥)0
similar ones preserve their main shape as shown in Fig-Points.
ures 9(b) and 9(c). Figure 10 shows the regularization of
Wine database. Due to the high dimensionality of the data250 elements of the initial labeled set. The sample query
set only few relevant feature pair projections are shown. is randomly selected from the unused elements. In this ex-
Each different color corresponds to a specific class for theample, we test the digit frofito 3. Figures 11(a), 11(c),
represented data set. The fully connected graph is built11(e) and 11(g) show the initial input query: the unlabeled
on the data with the weight function=g2. Each vertex  data. The IR task consists in estimating and ranking the
of the graph corresponds to a data point and is describednore similar images from the labeled samples according
by al4-dimensions feature vector. Figure 10(b) illustrates to the user query. In our experiment, we show ihdirst
that the data regularization has the interesting behawior t samples (Figures 11(b), 11(d), 11(f) and 11(h)) founded
naturally group all the samples in different parts of the by the semi-supervised clustering method and classified
feature space in comparison with the initial organization according to Equation (25). The fully connected graph is
where they are completely mixed (Figure 10(a)). computed in connection with the weight functian=g-.
These experiments show the potentialities of our me- The general parameters axe-1, and¢=1. As shown by
thod to process unorganized data. Finally, this data regu-the results, one can notice the correctness of retrieved im-
larization can be viewed as a data pre-processing that carages from initial user query even with the use of simple
be used to improve the efficiency of final data classifica- Euclidean distance.
tion or machine learning methods.

ample of the initial labeled data set

n | A
(‘D

Mathematical morphology processing for unorganized

Semi-supervised clustering for unorganized datainfor-  data set In the following experiments, as for the regu-
mation retrieval. Starting from a user query, a classical larization case, we show how our morphological frame-
Information Retrieval (IR) task consists in matching ob- work can be applied to process high dimensional unorga-
jects stored in a database. Then, the system presents toized data sets. Figures 12 and 13 shows morphological
the user an ordered result depending on the relevance wittprocessing: dilation, erosion and opening on respectively
the initial query. In semi-supervised learning term, user four independent synthetic unorganized data sets and the
query is an unlabeled object, and the retrieved objects aredUSPS database. As for closing case, opening can be de-
the more similar labeled objects contained in the databasefined as a serial composition of dilatiof) @nd erosiond)

Figure 11 shows an IR application performed on the operations. The opening of a functigris 4 (¢(f)).
USPS handwritten digits data set. For convenience, a sub-  Figure 12 shows morphological openings performed
set of the original database is used. The labeled set conon four independent synthetic unorganized data sets. For
sists into800 randomly selected elements from original each set, we compute tl8eNNG from the original data
ones for all the digits (frond to 9), i.e. the initial labeled  with weight the functionv=g,. Figures 12(b) and 12(c)
set is composed @000 samples. All the elements are la- show the results of dilation and erosion. Figure 12(d) the
beled with a corresponding digit class. Figure 11(i) shows opening operation. One can note that opening acts as fil-
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Figure 12. Synthetic data set morphological processing

can be used as pre-processing steps in classification pro-
tering or denoising processes on the data, and works agesses.

rouping operation where points tend to shrink into main
gataztrgctﬁres P 8. ACKNOWLEDGMENTS

Figure 13 shows the processing of USPS images databa@$e work of Vinh-Thong Ta was partially supported un-
This experiment consists afd0 samples randomly se- der a research grant of the ANR Foundation (ANR-06-
lected and mixed from digits digit and3. Figure 13(a)  MDCA-008-01/FOGRIMMI) and a doctoral grant of the
shows the original test set. From the original datapa Conseil Régional de Basse-Normandie and of the Coeur et
NNG is computed associated with the weight functierg:,  Cancer association in collaboration with the Department
where each vertex of the graph corresponds to an imageof Anatomical and Cytological Pathology from Cotentin
sample and is described by2a6-dimensions R16%16) Hospital Center.
feature vector where each feature is an image pixel grag'scal  The work of Sébastien Bougleux was partially sup-
value. Figures 13(b) and 13(c) shows the dilatation and ported by ANR Grant SURF-NT05-2 45825.
erosion results. Figure 13(d) presents the opening result.

It shows that the opening tends to reduce the data set to 9. REFERENCES

the main artificial digits. [1] L. Alvarez, F. Guichard, P-L. Lions, and J-M. Morel,
This two experiments show that the application of mor- “Axioms and fundamental equations of image pro-
phology on data sets can be useful for classification pur- cessing,"Archive for Rational Mechanics and Anal-

pose by extracting noiseless sub-data sets from noisy ones.  ysis vol. 123, no. 3, pp. 199-257, 1993.

7. CONCLUSION [2] J. Weickert,Anisotropic Diffusion in Image Process-

) ing, ECMI series. Teubner-Verlag, 1998.
In this paper, we have presented a graph-based framework

that unifies local and nonlocal processing in the contextof [3] N. Paragios, Y. Chen, and O. Faugeras, Etsind-

gradient-based regularization and mathematical morphol- ~ book of Mathematical Models in Computer Visjon

ogy. This unification is achieved by defining explicitly Springer, 2005.

Qiscrete derivatives over weighted graphs, and by choos- [4] G. Aubert and P. KornprobstMathematical Prob-

ing the graph topology anq geomeltry. ' lems in Image Processing, Partial Differential Equa-
Through several experiments, we have shown the effi- tions and the Calculus of Variationslumber 147 in

ciency of the proposed nonlocal regularizations and math- Applied Mathematical Sciences. Springer, 2nd edi-
ematical morphology processing. In particular, they bette tion. 2006 ' '

preserve sharp edges, as well as fine and repetitive struc-

tures than local ones. The application of our methodology [5] G. Gilboa and S. Osher, “Nonlocal operators with
to process unorganized data sets leads to a set of tools that  applications to image processing,” Report CAM 07-
can be useful to denoise, smooth or simplify these data. It 23, UCLA, Los Angeles, 2007.



[6]

[7]

(8]

G. Gilboa and S. Osher,
regularization and supervised segmentatid®l,AM
Multiscale Modeling and Simulatigrvol. 6, no. 2,
pp. 595-630, 2007.

S. Kinderman, S. Osher, and S. Jones, “Deblurring
and denoising of images by nonlocal functionals,”
SIAM Multiscale Modeling and Simulatiprol. 4,

no. 4, pp. 1091-1115, 2005.

L.P. Yaroslavsky,Digital picture processing—an in-
troduction Springer, 1985.

(21]

[9] J.S. Lee, “Digital image smoothing and the sigma [22]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

filter,” Computer Vision, Graphics, and Image Pro-
cessingvol. 24, no. 2, pp. 255-269, 1983.

C. Tomasi and R. Manduchi, “Bilateral filtering for
gray and color images,” ifProc. of the 6th Int.
Conf. on Computer Vision (ICCV1998, pp. 839—
846, IEEE Computer Society.

A. Buades, B. Coll, and J-M. Morel, “A review of
image denoising algorithms, with a new on&jul-
tiscale Modeling and Simulatigmvol. 4, no. 2, pp.
490-530, 2005.

F.R.K. Chung, “Spectral graph theoryCBMS Re-
gional Conference Series in Mathematiesl. 92,
pp. 1-212, 1997.

M. Hein, J-Y. Audibert, and U. von Luxburg, “Graph
laplacians and their convergence on random neigh-
borhood graphs,Journal of Machine Learning Re-
searchvol. 8, pp. 1325-1368, 2007.

R. Coifman, S. Lafon, M. Maggioni, Y. Keller,
A. Szlam, F. Warner, and S. Zucker, “Geometries
of sensor outputs, inference, and information pro-
cessing,” inProc. of the SPIE: Intelligent Integrated
Microsystems2006, vol. 6232.

A. Szlam, M. Maggioni, and R. Coifman, “A
general framework for adaptive regularization ba-
sed on diffusion processes on graphs,” Tech. Rep.
YALE/DCS/TR1365, YALE, 2006.

L.I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithm&hysica
D, vol. 60, no. 1-4, pp. 259-268, 1992.

S. Osher and J. Shen, “Digitized PDE method for
data restoration,” irln Analytical-Computational
methods in Applied Mathematicpp. 751-771.
Chapman & Hall/CRC, 2000.

T. Chan, S. Osher, and J. Shen, “The digital TV
filter and nonlinear denoising,JEEE Trans. Image
Processingvol. 10, no. 2, pp. 231-241, 2001.

D.Y. Zhou and B. Scholkopf, “Regularization on
discrete spaces,” iGerman Pattern Recognition
Symposium2005, vol. 3663 of NCS pp. 361-368,

Springer.

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

“Nonlocal linear image [20] S. Bougleux, A. ElImoataz, and M. Melkemi, “Dis-

crete regularization on weighted graphs for image
and mesh filtering,” inlst Int. Conf. on Scale
Space and Variational Methods in Computer Vision
(SSVM) 2007, vol. 4485 ofLNCS pp. 128-139,
Springer.

O. Lezoray, A. EImoataz, and S. Bougleux, “Graph
regularization for color image processingCom-
puter Vision and Image Understandingl. 107, no.
1-2, pp. 38-55, 2007.

A. Elmoataz, O. Lezoray, and S. Bougleux, “Non-
local discrete regularization on weighted graphs:
A framework for image and manifold processing,”
IEEE Transactions on Image Processingl. 17, no.

7, pp. 1047-1060, 2008.

R.W. Brockett and P. Maragos, “Evolution equations
for continuous-scale morphology,” IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing1992, vol. 3, pp. 125-128.

P. Maragos, “PDEs for morphology scale-spaces and
eikonal applications,” irmhe Image and Video Pro-
cessing Handbogkhapter 4.16, pp. 587-612. Else-
vier Academic Press, second edition, 2004.

H. Heijmans, P. Nacken, A. Toet, and L. Vincent,
“Graph morphology,” Journal of Visual Communi-
cation and Image Representatiorol. 3, no. 1, pp.
24-38, March 1992.

P. Soille,Morphological Image Analysis, Principles
and Applications Springer, second edition, 2002.

F. Meyer and R. Lerallut, “Morphological opera-
tors for flooding, leveling and filtering images using
grpahs,” inin Proceedings of the 6th IAPR-TC-15
GbRPR 2007, vol. 4538 of NCS pp. 158-167.

M. Requardt, “A new approach to functional analy-
sis on graphs, the connes-spectral triple and its dis-
tance function,” 1997.

A. Bensoussan and J-L. Menaldi, “Difference equa-
tions on weighted graphsJournal of Convex Anal-
ysis vol. 12, no. 1, pp. 13-44, 2005.

J. O’'Rourke and G. Toussaint, “Pattern recogni-
tion,” in Handbook of discrete and computational
geometry chapter 51, pp. 1135-1162. Chapman &
Hall/CRC, 2004.

A. Efros and T. Leung, “Texture synthesis by non-
parametric sampling,” ifProc. of the International
Conference on Computer Vision (ICC\)999, pp.
1033-1038, IEEE Computer Society.

C. Kervrann, J. Boulanger, and P. Coupg, “Bayesian
non-local means filter, image redundancy and adap-
tive dictionaries for noise removal,” iRroc. of the



(33]

(34]

1st Int. Conf. on Scale Space and Variational Meth- [45] S. Osher and J. A. Sethian,

ods in Computer Vision (SSVM)007, vol. 4485 of
LNCS pp. 520-532, Springer.

S. Bougleux, Reconstruction, Btection et
Régularisation de Don@es Discetes Ph.D. thesis,
Université de Caen Basse-Normandie, 2007.

A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-
posed problemsWinston & Sons, 1977.

[46]

[47]

[35] P.PeronaandJ. Malik, “Scale-space and edge detec-

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

tion using anisotropic diffusion,"EEE Trans. Pat-
tern Anal. Mach. Intell.vol. 12, no. 7, pp. 629-639,
1990.

S.M. Smith and J.M. Brady, “SUSAN-a new ap-
proach to low level image processindyiternational
Journal of Computer Visignvol. 23, no. 1, pp. 45—
78, 1997.

A. Levin, D. Lischinski, and Y. Weiss, “Colorization
using optimization,” ACM Trans. Graph.vol. 23,
no. 3, pp. 689-694, 2004.

L. Yatziv and G. Sapiro, “Fast image and video col
orization using chrominance blendingZEE Trans-
actions on Image Processingol. 15, no. 5, pp.
1120-1129, 2006.

O. Lézoray, V.-T. Ta, and A. Elmoataz, “Nonlo-
cal graph regularization for image colorization,” in
ICPR 20082008, p. to appear.

F. Wang, C. Zhang, H.C. Shen, and J. Wang, “Semi-
supervised classification using linear neighborhood
propagation,” iHEEE Computer Society Conference
on Computer Vision and Pattern Recognitidune
2006, vol. 1 oflEEE Conference Proceedinggp.
160-167, IEEE Computer Society.

L. Grady, “Random walks for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 28, no. 11, pp. 1768-1778, 2006.

M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold
regularization: A geometric framework for learning
from labeled and unlabeled exampleslburnal of
Machine Learning Researchiol. 7, pp. 2399-2434,
2006.

M. Breul3, B. Burgeth, and J. Weickert, “Anisotropic
continuous-scale morphology,” In Proceedings of
the 3rd IbPRIA 2007, vol. 4478 ofNCS pp. 512—
522, Springer.

V.-T Ta, A. Elmoataz, and O. Lézoray, “Partial dif-
ference equations over graphs: Morphological pro-
cessing of arbitrary discrete data,” ifhe 10th
ECCV, 2008, to appear.

(48]

“Fronts propagating
with curvature-dependent speed: Algorithms based
on Hamilton-Jacobi formulationsJournal of Com-
putational Physicsvol. 79, pp. 12—-49, 1988.

X. Ren and J. Malik, “Learning a classification
model for segmentation,” ifProceedings Ninth
IEEE International Conference on Computer Vision
October 2003, vol. 1, pp. 10-17.

P.A. Arbelaez and L.D. Cohen, “Energy partitions
and image segmentation,Journal of Mathemati-
cal Imaging and Visionvol. 20, no. 1-2, pp. 43-57,
January—March 2004.

V.-T. Ta, O. Lézoray, and A. Elmoataz, “Graph based
semi and unsupervised classification and segmen-
tation of microscopic images,” ithe 7th ISSPIT
2007, December 2007, pp. 1177-1182.



