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Abstract. The graph Laplacian plays an important role in describing
the structure of a graph signal from weights that measure the similar-
ity between the vertices of the graph. In the literature, three definitions
of the graph Laplacian have been considered for undirected graphs: the
combinatorial, the normalized and the random-walk Laplacians. More-
over, a nonlinear extension of the Laplacian, called the p-Laplacian, has
also been put forward for undirected graphs. In this paper, we propose
several formulations for p-Laplacians on directed graphs directly inspired
from the Laplacians on undirected graphs. Then, we consider the prob-
lem of p-Laplacian regularization of signals on directed graphs. Finally,
we provide experimental results to illustrate the effect of the proposed
p-laplacians on different types of graph signals.

Keywords: Directed graphs · p-Laplacian · Graph signal · Regulariza-
tion.

1 Introduction

With the development of new sensors, signals can now be generated from many
different sources providing images, meshes, social or biological networks, to quote
a few. These signals often have a structure much more irregular than a classical
Euclidean grid but they can be represented by graphs [9]. When data vectors
are associated with graph vertices, a so-called graph signal is obtained. The new
research field of signal processing on graphs aims at extending the classical dis-
crete signal processing tools to signals living on an underlying irregular graph
(see [14] for a review) and one of its key ingredients is the graph Laplacian.
Indeed, the graph Laplacian plays an important role in describing the structure
of a graph signal from weights that measure the similarity between the vertices
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of the graph [3]. Several definitions of the graph Laplacian have been considered
so far for undirected graphs [10]: the combinatorial Laplacian, the normalized
Laplacian and the random-walk Laplacian. These Laplacians have become in-
creasingly popular in graph signal processing [13,8,16] and machine learning
[11,10]. Some extensions of the Laplacian have been also proposed for directed
graphs [4,1,7]. A nonlinear extension of the Laplacian also exists that is called
the p-Laplacian. This latter operator has been considered for undirected graphs
and enables to recover analogues (when p = 2) of the combinatorial Laplacian
[2,6] and of the normalized Laplacian [18]. Unfortunately there exists actually
no formulation of the p-Laplacian for the general case of directed graphs and we
propose in this paper three different formulations for the latter (i.e., combina-
torial, normalized, and random-walk, similarly to the Laplacian on undirected
graphs). Then, we consider the problem of p-Laplacian regularization of signals
on directed graphs that minimizes a loss function plus a regularization term. To
the best of our knowledge this is the first time that the use of the p-Laplacian
on directed graphs is considered for graph signal regularization. Finally we show
some results for the filtering of different graph signals.

2 Notations

We introduce in this section the notations that will be used in the paper. A
graph represents a set of elements and a set of pairwise relationships between
those elements [9]. The elements are called vertices and the relationships are
called edges. Formally, a graph G [5] is defined by the sets G = (V,E) in which
E ⊆ V × V. We denote the ith vertex as vi ∈ V. Since each edge is a subset of
two vertices, we write eij = {vi, vj}. A graph is called directed when each edge
eij contains an ordering of the vertices. A directed edge from vj to vi will be
denoted vj → vi. The edges of a graph can be weighted with a function denoted
by w : E → R+. The adjacency matrix representation of directed graph is a
|V| × |V| matrix W where Wij = w(vi, vj) if vi → vj ∈ E and 0 otherwise. For

undirected graphs the matrix W is symmetric and WT = W. This will not be
the case in this paper since we consider directed graphs and if vi → vj ∈ E

this will not necessarily imply that vj → vi ∈ E or that w(vi, vj) = w(vj , vi).
The out-degree of a node vi, d+ (vi), is equal to d+ (vi) =

∑
vi→vj∈E wij . The

in-degree of a node vi, d− (vi), is equal to d− (vi) =
∑
vj→vi∈E wji. Note that

in an undirected graph, d+ (vi) = d− (vi) , ∀vi ∈ V and is denoted d (vi). The
out-degree matrix D+ is a diagonal matrix with D+ii = d+ (vi), and similarly
for D−. When the graph is undirected, one has D+ = D− = D. For undirected
graphs, several Laplacian formulation exist [10]. The combinatorial Laplacian

is the matrix L = D −W. The normalized Laplacian is L̃ = D−1/2LD−1/2 =
I − D−1/2WD−1/2. The random walk Laplacian is Lrw = D−1L = I − D−1W.
Now we define the space of functions on graphs (i.e., for graph signals). Let
H(V) be the Hilbert space of real-valued functions defined on the vertices of a
graph, a graph signal is a function f : V → Rn of H(V) that maps each vertex
to a vector f(vi). The space H(V) is endowed with the usual inner product
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〈f, h〉H(V) =
∑
vi∈V f(vi)h(vi), where f, h : V → R. Similarly, let H(E) be the

space of real-valued functions defined on the edges of G. It is endowed with the
inner product 〈F,H〉H(E) =

∑
eij∈E F (eij)H(eij), where F,H : E → R are two

functions of H(E).

3 p-Laplacian on directed graphs

3.1 Definitions

To define the p-Laplacian we need first to introduce several operators that op-
erate on directed graphs. The formulation of these operators is similar to the
one found in [18] but are expressed here on directed graphs. It is important
to note that in contrast to undirected graphs, there has been few studies on
Laplacian for directed graphs [4] and even less for the p-Laplacian [19]. The di-
rected difference operator of a graph signal f ∈ H(V), called dw : H(V)→ H(E),
over a directed edge vi → vj is denoted by (dwf)(vi, vj). We do not explicitly
provide now the definition of this difference operator and will show that with
different definitions, different p-Laplacian on directed graphs can be formulated.
The adjoint operator d∗w : H(E) → H(V), of a function H ∈ H(E), can then be
expressed at a vertex vi ∈ V by using the definition of the inner products since
〈H, dwf〉H(E) = 〈d∗wH, f〉H(V). The gradient operator of a function f ∈ H(V), at
vertex vi ∈ V , is the vector of all the weighted directed differences (dwf)(vi, vj),
with respect to the set of outgoing edges vi → vj ∈ E:

(∇wf)(vi) = ((dwf)(vi, vj))
T ,∀(vi → vj) ∈ E . (1)

Its Lp norm is defined by

‖(∇wf)(vi)‖p =

[ ∑
vi→vj∈E

|(dwf)(vi, vj)|p
]1/p

. (2)

Then, the p-Laplacian ∆p
wf : H(V) → H(V) can be formulated as the discrete

analogue of the continuous one by [6]:

∆p
wf(vi) =

1

2
d∗w

(
‖∇wf(vi)‖p−22 (dwf)(vi, vj)

)
=

1

2
d∗w

(
(dwf)(vi, vj)

‖∇wf(vi)‖2−p2

)
(3)

where p ∈ (0,+∞). If we choose specific formulations for the directed difference
operator, we can end-up with new formulations of the p-Laplacian on directed
graphs, that we propose in the sequel. Details are provided only for the first
formulation due to paper length constraints.

3.2 Combinatorial p-Laplacian on directed graphs

First we consider

(dwf)(vi, vj) = w(vi, vj)(f(vj)− f(vi)) (4)
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as a directed difference operator on the edge vi → vj . This is similar to the one
used for the combinatorial Laplacian on undirected graphs. Using the definitions
of the inner products in H(E) and H(V), we can express the adjoint operator

(d∗wH)(vi) =
∑
vj→vi

H(vj , vi)w(vj , vi)−
∑
vi→vj

H(vi, vj)w(vi, vj) . (5)

Proof.

〈H, dwf〉H(E) =
∑

(vi,vj)∈E

(dwf)(vi, vj)H(vi, vj) =
∑

(vi,vj)∈E

w(vi, vj)(f(vj)− f(vi))H(vi, vj)

=
1

2

∑
vi∈V

 ∑
vi→vj

H(vi, vj)w(vi, vj)(f(vj)− f(vi)) +
∑
vj→vi

H(vj , vi)w(vj , vi)(f(vi)− f(vj))


=

1

2

∑
vi∈V

2
∑
vj→vi

H(vj , vi)w(vj , vi)f(vi)− 2
∑
vi→vj

H(vi, vj)w(vi, vj)f(vi)


=
∑
vi∈V

f(vi)

 ∑
vj→vi

H(vj , vi)w(vj , vi)−
∑
vi→vj

H(vi, vj)w(vi, vj)

 = 〈d∗wH, f〉H(V )

The adjoint operator measures the difference between the in- and outgoing flows
at a vertex and can be associated to the divergence operator denoted by −d∗w.
Then, using Equation (3) and the definitions of dw, d∗w and ‖∇w‖, a combina-
torial p-Laplacian formulation on directed graphs can be expressed by:

∆p
wf(vi) =

1

2

f(vi)

 ∑
vj→vi

w(vj , vi)
2

‖∇wf(vj)‖2−p2

+
∑
vi→vj

w(vi, vj)
2

‖∇wf(vi)‖2−p2


−

 ∑
vj→vi

w(vj , vi)
2

‖∇wf(vj)‖2−p2

f(vj) +
∑
vi→vj

w(vi, vj)
2

‖∇wf(vi)‖2−p2

f(vj)

 (6)

On the opposite to the classical formulation on undirected graphs [2,6], the latter
takes into account both ingoing and outgoing edges from vertices. However,
with a specific (directed or undirected) graph and a given value of p, we can
recover several state-of-the-art Laplacian formulations (up to a power of 2 on
the weights). With undirected graphs, the formulation of [2] is recovered, with
symmetric directed graphs the formulation of [7] is recovered. With p = 2, other
formulations have been proposed on directed graphs but they only use in-degrees
as∆2

wf = (D−−W)f [15] or out-degrees as∆2
wf = (D+−W)f [12]. Our proposal

encompasses these. In particular, for p = 2, Equation (6) can be expressed as
∆2
wf = 1

2 (D− +D+ −W−WT )f in matrix expression. With undirected graphs
and the classical combinatorial Laplacian ∆2

wf = Lf is recovered [3].
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3.3 Normalized p-Laplacian on directed graphs

Second we consider

(dwf)(vi, vj) = w(vi, vj)

(
f(vj)√
d− (vj)

− f(vi)√
d+ (vi)

)
(7)

as a directed difference operator on the edge vi → vj . This is close to the one used
for the normalized Laplacian on undirected graphs, except that we normalize
with both in- and out-going degrees since we consider directed graphs. Using
the definitions of the inner products in H(E) and H(V), we can express the
adjoint operator

(d∗wH)(vi) =
∑
vj→vi

H(vj , vi)w(vj , vi)√
d− (vi)

−
∑
vi→vj

H(vi, vj)w(vi, vj)√
d+ (vi)

. (8)

Then, using Equation (3) and the definitions of dw, d∗w and ‖∇w‖, a normalized
p-Laplacian formulation on directed graphs can be expressed by:

∆̃p
wf(vi) =

1

2

f(vi)

 ∑
vj→vi

w(vj , vi)
2

d− (vi) ‖∇wf(vj)‖2−p2

+
∑
vi→vj

w(vi, vj)
2

d+ (vi) ‖∇wf(vi)‖2−p2


−

 ∑
vj→vi

w(vj , vi)
2‖∇wf(vj)‖p−22√

d− (vi) d+ (vj)
f(vj) +

∑
vi→vj

w(vi, vj)
2‖∇wf(vi)‖p−22√

d+ (vi) d− (vj)
f(vj)


(9)

As previously we can recover several state-of-the-art formulations. With directed
graphs, p = 2 and weights replaced by their square root, the formulation can be
reduced to

∆̃2
wf(vi) = f(vi)−

1

2

 ∑
vj→vi

w(vj , vi)f(vj)√
d− (vi) d+ (vj)

+
∑
vi→vj

w(vi, vj)f(vj)√
d+ (vi) d− (vj)


(10)

or as (
I− 1

2

(
D
−1/2
− WD

−1/2
+ + D

−1/2
+ WTD

−1/2
−

))
f

in matrix form. This formulation is closely related to the normalized Laplacian
for symmetric directed graphs proposed in [7,17] and expressed as(

I− 1

2

(
D−1/2WD−1/2 + D−1/2WTD−1/2

))
f

. As it can be seen they normalize only by D since the graph is symmetric, in con-
trast to our approach. A similar remark can be made for the formation of [4] for
symmetric directed graphs that are strongly connected. With undirected graphs,

our formulation reduces to ∆̃2
wf(vi) = f(vi)−

∑
vj∈V

w(vj ,vi)√
d(vi)d(vj)

f(vj) which is ex-

actly the normalized Laplacian (I−D−1/2WD−1/2)f for undirected graphs [3].
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3.4 Random-walk p-Laplacian on directed graphs

Third we consider

(dwf)(vi, vj) =
w(vi, vj)√

d+ (vi)
(f(vj)− f(vi)) (11)

as a directed difference operator on the edge vi → vj . This is similar to the one
used for the random-walk Laplacian on undirected graphs. Using the definitions
of the inner products in H(E) and H(V), we can express the adjoint operator

(d∗wH)(vi) =
∑
vj→vi

H(vj , vi)w(vj , vi)√
d+ (vi)

−
∑
vi→vj

H(vi, vj)w(vi, vj)√
d+ (vi)

. (12)

Then, using Equation (3) and the definitions of dw, d∗w and ‖∇w‖, a random-walk
p-Laplacian formulation on directed graphs can be expressed by:

∆p,rw
w f(vi) =

1

2

f(vi)

 ∑
vj→vi

w(vj , vi)
2

d+ (vj) ‖∇wf(vj)‖2−p2

+
∑
vi→vj

w(vi, vj)
2

d+ (vi) ‖∇wf(vi)‖2−p2


−

 ∑
vj→vi

w(vj , vi)
2

d+ (vj) ‖∇wf(vj)‖2−p2

f(vj) +
∑
vi→vj

w(vi, vj)
2

d+ (vi) ‖∇wf(vi)‖2−p2

f(vj)


(13)

Again, with a specific (directed or undirected) graph and a given value of p,
we can recover several state-of-the-art Laplacian formulations (up to a power of
2 on the weights). In particular, for p = 2, Equation (13) can be expressed as
∆2,rw
w f = (I − 1

2D
−1
+ (W + WT ))f in matrix expression. With directed graphs

and p = 2 the formulation in matrix expression of [7] is recovered, and with
undirected graphs and p = 2 the classical random-walk Laplacian∆2,rw

w f = Lrwf
is recovered [10]. With p = 2, a similar formulation for directed graphs has been
expressed as (I−D−1+ W)f in [1].

4 p-Laplacian Regularization on Directed Graphs

In the previous section, we have proposed general formulations for combinatorial,
normalized and random-walk p-Laplacians on directed graphs. From these, we
consider the problem of p-Laplacian regularization of signals on directed graphs
that minimizes a loss function plus a regularization term. Let f0 : V → R be a
noisy graph signal of a clean graph signal g : V→ R corrupted by a given noise
n such that f0 = g+n. To recover the uncorrupted function g, a commonly used
method is to seek for a function f : V→ R which is regular enough on G, and also
close enough to f0. This inverse problem can be formalized by the minimization
of an energy functional, that typically involves a regularization term plus an
approximation term (also called loss). The proposed graph p-Laplacians can be
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used to define a regularization functional Rpw : H(V) → R+ on directed graphs
by

Rp,∗w (f) = 〈∆p,∗
w f, f〉H(V) = 〈dwf, dwf〉H(E) =

∑
vi∈V

‖(∇wf)(vi)‖p2 (14)

where ∆p,∗
w is among equations (6),(9) or (13). Since Rp,∗w ≥ 0, ∆p,∗

w is posi-
tive semi-definite. From this we consider the following variational problem of
p-Laplacian regularization on directed graphs

g ≈ min
f :V→R

{
Ep,∗w (f, f0, λ) = 1

pR
p,∗
w (f) + λ

2 ‖f − f
0‖22
}
, (15)

where the regularization functional Rp,∗w can be induced from one of the proposed
p-Laplacians on directed graphs. When p ≥ 1, the energy Ep,∗w is a convex
functional of functions of H(V). To get the solution of the minimizer (15), we
consider the following system of equations

∂Ep,∗w (f, f0, λ)

∂f(vi)
= 0,∀vi ∈ V (16)

For all the p-Laplacians we have proposed, it can be proved that 1
p
∂Rp,∗

w

∂f(vi)
=

2∆p
wf(vi) (this is a direct consequence of Equation (14)) and the system of

equations is then re-written as follows:

2∆p,∗
w f(vi) + λ(f(vi)− f0(vi)) = 0 (17)

By substituting the expression of ∆p,∗
w f(vi) by one of the proposed p-Laplacians

(∆p
w, ∆̃p

w, ∆p,rw
w ) into Equation (17), the system of equations can be solved using

a linearized Gauss-Jacobi iterative method. Let t be an iteration step, and f (t)

be the solution at step t, then the following iterative algorithm is obtained for
each of the proposed p-Laplacian on directed graphs.

f t+1(vi) =

λf0(vi) +

( ∑
vj→vi

w(vj ,vi)
2ft(vj)

φ(vj ,vi)‖∇wf
t(vj)‖2−p

2

+
∑

vi→vj

w(vi,vj)
2)ft(vj)

φ(vi,vj)‖∇wf
t(vi)‖2−p

2

)
λ+

∑
vj→vi

w(vj ,vi)2

γ1(vj ,vi)‖∇wf
t(vj)‖2−p

2

+
∑

vi→vj

w(vi,vj)2

γ2(vi,vj)‖∇wf
t(vi)‖2−p

2

(18)

where φ, γ1 and γ2 are defined as follows, depending on the chosen directed
p-Laplacian ∆p,∗

w :

– Combinatorial p-Laplacian: φ(vj , vi) = γ1(vj , vi) = γ2(vi, vj) = 1,

– Normalized p-Laplacian:φ(vj , vi) =
√

d− (vi) d+ (vj), γ1(vj , vi) = d− (vi)
and γ2(vi, vj) = d+ (vi),

– Random-walk p-Laplacian: φ(vi, vj) = d+ (vi) and γ1(vj , vi) = γ2(vi, vj) =
d+ (vi).
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Original image G0 G
5,0
10 G

5,1
10

Fig. 1. Examples of directed graphs for an image. From left to right: original image,
a symmetric 8-grid graph, 10-nearest neighbor graphs (inside a 11 × 11 window with
color-based or 3× 3 patch-based distances).

5 Experiments and Results

In this section we provide sample results for the filtering of three different types
of graphs signals for different directed graphs topologies and p-Laplacians. PSNR
values will be used to compare the results. To weight the edges of the graphs,
we use a parameterless function

w(vi, vj) = 1−
‖Ff0

τ (vi)− Ff0

τ (vj)‖2
max

vk→vl∈E
‖Ff0

τ (vk)− Ff0

τ (vl)‖2
.

The vector Ff0

τ (vi) =
(
f0(vj) : vj ∈ Nτ (vi) ∪ {vi}

)T
corresponds to the set

of values around vi within a τ -hop Nτ (vi) (for images this is a patch of size
(2τ + 1)2). We will consider two types of directed graphs: 8-adjacency directed
grid graph (denoted G0, that connects each vertex to its 8 spatially closest nearest
neighbors), and k-nearest neighbor directed graphs (denoted G

α,τ
k , that connects

each vertex to its k nearest neighbors in terms of Ff0

τ L2 norm within a α-hop).
Figure 1 illustrates the influence of the graph construction: nearest neighbors
with patch-based distances better capture the image geometry and this can be
beneficial for latter processing.

5.1 Images

The first type of graph signal we consider is 2D color images (see Figure 2)
and f : V → R3. An image has been corrupted by Gaussian noise and we
filter the latter with p-Laplacian regularization with different configurations: a
8-adjacency directed grid graph (with λ = 0.05, p=1), and a 8-adjacency directed
grid graph augmented with a 10-nearest neighbor graph within a 5-hop (λ = 0.09
with patches of size 3 × 3). The nonlinear 1-Laplacian always provides better
results than the linear 2-Laplacian. With G0 the graph is directed but symmetric
and the filtering reduces to the undirected case [6], whereas with G0 ∪ G

5,1
10 the

graph is not symmetric. As it can be seen, adding directed edges to the graph
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σ 20 40

∆p,∗
w ∆p

w ∆̃p
w ∆p,rw

w ∆p
w ∆̃p

w ∆p,rw
w

p = 2 14.54 14.63 14.56 12.91 13.08 12.88

p = 1 16.37 16.83 16.80 14.01 13.11 13.73

Table 1. Image database regularization on directed graphs (λ = 10−4). Best results
(in terms of PSNR) are bold faced.

can enhance the results. We have observed that for the directed normalized p-
Laplacian the results can degrade when low values of the in-degree occur. This
is not the case for ∆p,rw

w that always enables to obtain better results whatever
the configurations we tested.

5.2 Database of images

The second type of graph signal we consider is an image database (see Figure
3) and f : V → R28×28. We selected a subset of 90 images from the MNIST
database for digits 0, 1, 3 and corrupted the images with Gaussian noise of stan-
dard devision σ. Then a directed 5-nearest neighbor graph is constructed on
the whole dataset (α = ∞). This graph is not symmetric. As it can be seen in
Figure 3, the filtering with the ∆̃1

w enables to remove the noise while preserving
the main structures. Table 1 presents additional results for different amounts
of noise. Again, better results are obtained with p = 1 but the best results are
obtained with different p-Laplacians, the normalized Laplacian having this time
a much better behavior than for images.

5.3 Meshes

Finally, we consider 3D colored meshes as a last graph signal and f : V → R3.
The meshes are 3D scans from an ancient building and a person. The color is
noisy due to the scanning process and the objective is to filter the vertices colors
and not their 3D coordinates. The considered graph is a symmetric directed
mesh graph (provided from the scan) augmented with a 5-nearest neighbor graph

within a 3-hop. To compare vertices we use Ff0

1 . However, since the mesh graph
is not regular, the feature vectors are not of the same size. We cannot use a L2

distance to compare them, so we use instead the Earth Mover Distance between

the histograms of Ff0

1 . For space contraints, we show results only with ∆p,rw
w that

provided the best results. Again with p = 1 the filtering enables a much better
preservation of the signal sharp edges while removing noise.

6 Conclusion

In this paper we have proposed three formulations for p-Laplacians on directed
graphs. They used specific difference operators on directed graphs that are in-
spired from the combinatorial, the normalized and the random-walk laplacians.
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Original Image Corrupted image (σ = 15): 24.69dB

∆p
w ∆̃p

w ∆p,rw
w

p
=

2
,G

0

21.97dB 23.42dB 23.65dB

p
=

1
,
G
0

26.47dB 28.79dB 29.33dB

p
=

1
,
G
0
∪
G
5
,1

1
0

28.15dB 27.11dB 30.12dB

Fig. 2. p-Laplacian regularization of a corrupted image. See text for details.
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Original DB Corrupted DB (σ = 40) G
∞,0
10 Filtered DB

Fig. 3. p-Laplacian regularization of a corrupted image database (with ∆̃p
w, p = 1, and

λ = 10−4). See text for details.

Fig. 4. 3D colored mesh regularization on directed graphs (From left to right: original
mesh, filtering with ∆p,rw

w , λ = 0.05, with p = 2 and p = 1).

These formulations of p-Laplacians on directed graphs had never been addressed
before unless for specific graphs (symmetric and with p = 2 [7]). Our proposal
goes beyond this. From these formulations, we have considered the problem of
p-Laplacian regularization of graph signals and proposed a solution to the latter.
Finally, some experimental results show the benefit of the approach for the fil-
tering of three types of graph signals: images, images’ databases, and 3D colored
meshes. Given the results, none of the proposed p-Laplacians on directed graphs
can be considered as always providing the best results which motivates the need
for several formulations. Directed and non symmetric graphs have also shown
their interest with respect to classical symmetric undirected graphs. In future
works, we will consider other optimization schemes as well as the introduction
of non symmetric weights for directed symmetric graphs with applications in
image semi-supervised segmentation.
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16. Tremblay, N., Gonçalves, P., Borgnat, P.: Design of graph filters and filterbanks.
ArXiv e-prints (2017)

17. Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled data on a
directed graph. In: International Conference on Machine Learning. pp. 1036–1043
(2005)

18. Zhou, D., Schölkopf, B.: Regularization on discrete spaces. In: Pattern Recognition,
27th DAGM Symposium. pp. 361–368 (2005)

19. Zhou, D., Schölkopf, B., Hofmann, T.: Semi-supervised learning on directed graphs.
In: Advances in Neural Information Processing Systems 17. pp. 1633–1640 (2004)


	p-Laplacian regularization of signals on directed graphs

