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B Implementation details

B.1 Fast Marching propagation and extraction of
saddle points

As described in Section 3.1, admissible paths joining two
source points a and b are constructed by extracting the sad-
dles points of the combined action map Ua,b, located on the
medial set Ma,b. The minimal action map Ua,b can be es-

timated, at each point of the discrete image domain D̃ =
D ∩ Z2, by solving the discrete derivative free Eikonal equa-
tion [10, 6, 8]

(
∀x∈ D̃ \ {a, b}, Ua,b(x) = Fx (Ua,b) ,

Ua,b(a) = Ua,b(b) = 0,
(1)

where

Fx(Ua,b) = min
y∈∂N(x)

Ua,b(y) + WP (y, x)‖x−y‖, (2)

and ∂N(x)⊂D defines the boundary of a topological ball,
usually the boundary of the convex hull of the 4-connected or
8-connected grid neighbors of x. According to (2), the mini-
mal action at x is approximated by the minimal combination
of the Euclidean distance between x and a point y ∈ ∂N(x),
weighted by potential P along segment xy, and the minimal
action at y obtained by affine interpolation of Ua,b from its
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two nearest grid points in ∂N(x). Let xi and xj be these two
points. Then, update operator (2) becomes

Fx(Ua,b) = min
xixj∈∂N(x)

min
t∈[0,1]

α(t), (3)

α(t)= (1− t)Ua,b(xi)+ tUa,b(xj)+ WP (y, x)‖x−y‖,

where y =(1− t)xi + txj . Several interpolation approaches
have been explored to compute the weight WP (see [1] for
recent comparisons). In our experiments we have simply used
WP (x, y)= P (x). Regardless of the choice of the neighbor-
hood and the weight, the solution of (1) can be approximated
by the Fast Marching algorithm, which propagates two dis-
crete fronts simultaneously, one starting from a and the other
from b, until they meet to form a discrete version of the me-
dial set Ma,b, as illustrated in Fig. 1. Algorithm 1 presents a
non-optimized version of the Fast Marching. Fronts are rep-
resented by a set Q initialized with the source points. At each
step (while loop), a point of the fronts having a minimal ac-
tion is removed from Q, and the minimal action of its neigh-
bors is updated in consequence by solving (3) (see [6, 1, 8]
for details). In particular, a neighbor which has not yet been
explored by the fronts becomes a new point of the fronts and
is thus added to Q. This propagation process is iterated until
Q is empty, which guaranties the computation of Ua,b at each

point of D̃. Other instructions are related to the computation
of the medial set, explained in the following.

Saddle points on the medial set Ma,b are difficult to lo-
calize during the propagation, mainly due to discretization.
It is more easy to compute a discrete medial set which is then
traversed in order to approximate the saddle points. The me-
dial set separates D into two regions, the first one composed
of the points at least as close to a as to b,

rega = {x∈D | Ua(x) 6 Ub(x) } , (4)

and the other one, regb, defined similarly. The underlying par-
tition of D, called Voronoi partition, satisfies D=rega ∪ regb

and Ma,b =rega ∩ regb. Together with this partition, we also
define the Voronoi map

vor(x) =
�

l(y) | x∈ regy , y ∈{a, b}
	

, (5)

which provides for each point x∈D the labels of
its nearest source points, according to a label func-
tion l : {a, b}→{1, 2}. Obviously, the medial set satisfies
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(a) (b) (c) (d) (e)

Fig. 1 (a) Potential and two source points. (b-e) Several steps of the computation of the minimal action map.

(a) (b) (c) (d) (e)

Fig. 2 (a) Voronoi map obtained by updating Voronoi labels locally [2, 8]: points are not always well labelized, particularly
in regions of D where the gradient of the minimal action map and the medial set are aligned. (b) A zoom of (a) with −∇Ua,b.
(c) Voronoi map constructed using back-propogation to determine labels (by Algorithm 1): minimal paths are ensured to be
located in only one Voronoi region. (e) Saddles (red dots) and associated minimal paths between the two source points.

Algorithm 1 Minimal action map and Voronoi map.
func VoronoiMap(a,b,P ,path2Label)
input

a, b∈ D̃ : source points
P : D̃→R+∗ : discrete potential
path2Label : a method solving (6)

variables

U : D̃ → R+: minimal action map
∇U : D̃ → R2: gradient of U

vor : D̃ → {0, 1, 2}: Voronoi map
Q: front set encoded as a priority queue

U [x] := +∞, vor[x] := 0, ∇U [x] := 0, ∀x∈ D̃
U [a] := U [b] := 0, vor[a] := 1, vor[b] := 2
Q := {a, b}
while Q 6= ∅ do

x := argmin {U [x] | x∈Q }
Q := Q \ {x}
vor[x] := path2Label(x,∇U, vor)
for y ∈N(x) do

if U [y] = +∞ then

Q := Q ∪ {y}
end if
unew := Fy(U)
if unew < U [y] then

U [y] := unew
update ∇U [y]

end if
end for

end while

return (U,∇U, vor)

Ma,b = {x∈D | card(vor(x)) > 1 }. In practice, the Voronoi

map is only estimated at points of D̃, when (1) is solved. This
is usually realized locally, in the neighborhood N(x) of each
point x∈ D̃, by assigning to x the label of the grid point clos-
est to the optimal neighbor y ∈ ∂N(x). Using the Fast March-
ing algorithm, labels are thus propagated simultaneously to
minimal actions, starting with vor(a)=1 and vor(b)=2 (see
[2, 8]). By construction, considering only one optimal point
y ∈ ∂N(x) implies that each point of D̃, being or not on the
medial set Ma,b, is always connected to exactly one source
point by a unique minimal path. As illustrated in Fig. 2(a),
the resulting Voronoi map is not always consistent with the
definition of a Voronoi partition, as some minimal paths may
connect two points having different labels. This leads to errors
in the localization of the medial set1. To overcome this draw-
back, which is mainly due to discretization, neighborhoods
used to determine labels must be extended. This can be done
by explicitely solving back-propagation (6) at each step of the
Fast Marching algorithm (function path2Label in while loop
of Algorithm 1). Let x∈Q be the front point having a mini-
mal action and which is going to be labelized. Starting from
x, the back-propagation is stopped when a source point, or
a point surrounded by points of D̃ having the same Voronoi
label, is reached. The proposed discrete Voronoi map is finally
defined by ṽor : D̃→{1, 2},

ṽor(x) = ṽor (γ̃(tl)) , ∀x∈ D̃, (6)

1 Note that computing Ua,b in one propagation also intro-
duces errors on the minimal actions, on and near the medial
set, comparing to the map min(Ua, Ub) obtained with two
separate propagations. But this should not affect so much
the localization of the Voronoi regions.
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Uvi+1 < Uvi

Uvi < Uvi+1

m̃vi,vi+1

Fig. 3 Digital 4-connected medial curve on pixel edges. The
combined action map on the medial point (pixel corner) is
estimated using bilinear interpolation over the 4 neighboring
pixels.

such that γ⊂D is the minimal path solving8><
>:
∀t > 0,

d

dt
γ(t) = −

∇Ua,b(γ(t))

∇Ua,b(γ(t))


 ,

γ(0) = x,

(7)

γ̃(tl)∈ D̃ is the nearest grid neighbor of γ(tl)∈D, and tl > 0
satisfies

γ̃(tl)∈{a, b}, or ṽor(γ̃(tl))= ṽor(y), ∀y ∈N8(γ̃(tl)),

where N8(γ̃(tl))⊂D̃ represents the 8-connected neighbors of
γ̃(t). Such a neighborhood ensures γ̃(tl) to be located in the
interior of a Voronoi region being propagated. Remark that
the gradient of the combined action map, involved in (7), can
be estimated during the propagation from the updated min-
imal action (for loop of Algorithm 1). The proposed Voronoi
labelling approach allows to preserve the computational ad-
vantages of the Fast Marching algorithm, while guarantying
discrete Voronoi maps, and associated medial sets, consistent
with the extraction of minimal paths, as observed in Fig. 2(c).

Based on the discrete Voronoi map, an approximation
of the medial curve can now be defined as a sequence of
connected pixel corners, as illustrated in Fig. 3. Since the
two Voronoi regions are 4-connected sets, the discrete medial
curve is 4-connected and simple. Hence, it can be extracted
by a basic edge-linking procedure. Starting from any pixel
corner on the boundary, pixel edges incident to pixels having
different Voronoi labels are followed. Two situations may
arise, whether the medial curve is open or closed. In the first
situation, the two Voronoi regions are simply connected, i.e.
without hole, and the medial curve reaches the boundaries of
the image domain (see Fig. 2(e)). The edge-linking procedure
should be run twice, taking the two possible directions
starting from the initial pixel corner. In the second situation,
one of the Voronoi region is entirely surrounded by the
other, making the medial curve closed. Quite simply, the
edge-linking procedure is stopped when the initial pixel
corner is met again. Note that the orientation of the curve
is not critical for the extraction of saddle points, thus the
edge-linking step may be performed arbitrarily clockwise or
counter-clockwise.

Let us shorten Ua,b to U , and let m̃ be the discrete me-
dial curve approximating ma,b. We chose to estimate U at
each pixel corner on m̃ by bilinear interpolation. Trivially,
the combined action at a pixel corner is taken as the aver-
age of the combined actions at the four neighboring pixels.
To account for possible noise, values of the combined action

Fig. 4 Path with real coordinates with subpixel precision
(dashed blue line) and its corresponding digital 4-connected
path (plain red line) over the potential grid.

(d)

(a) (b)

(c)

Fig. 5 Various types of simples loops on digital 4-connected
curves: (a) Positive crossing with no overlapping section (b)
Negative crossing with no overlapping section (c) Positive
crossing with overlapping section (d) Negative crossing with
overlapping section.

are smoothed along m̃ by Laplacian regularization. In order
to extract robust saddle points in spite of the effect of dis-
cretization, local minima are considered up to second order.
A point m̃j is marked as a saddle point of U if

U(m̃j−2)<U(m̃j−1)<U(m̃j)<U(m̃j+1)<U(m̃j+2).

Actually, not all saddle points are kept as starting points for
path construction. In practice, we limit the number of admis-
sible paths per set so that it does not exceed a user-defined
threshold Kmax. If the number of detected local minima is
greater than the threshold, they are sorted by increasing com-
bined action and only the Kmax lowest saddle points are taken
as initial points for admissible paths.

B.2 Using digital curves

Discrete computation of region integrals involved in the re-
gion term, in Eq. (16), as well as the amount of self-tangency
and twisting in Eqs. (9) and (11) is performed over digital 4-
connected curves. Gradient descent over the minimal action
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map generates admissible paths which are sampled contin-
uous curves, i.e. sequences of points in R2 separated by an
arbitrary step. Approximating region integrals and detect-
ing intersections is more convenient on curves with integer
coordinates and constant spacing between points, thus each
admissible path is discretized as an open digital 4-connected
curve (see Fig. 4). The resulting digital assembled contour Γ̃

is a sequence of ñ points in Z2,

Γ̃ = 〈Γ̃1, Γ̃2, . . . , Γ̃ñ〉,

such that



Γ̃i+1 − Γ̃i




 = 1, ∀1 ≤ i ≤ ñ − 1, i.e. successive

points are distinct and differ by only one coordinate.

Moreover, the sequence is closed, hence



Γ̃1 − Γ̃ñ




 = 1. We

apply the discrete Green’s theorem [4, 9] on Γ̃ to efficiently
approximate the region integrals.

We now focus on the implementation of the measures
described in sections 4.1 and 4.2. One should be aware that
detecting intersections and corresponding loops may be
done on continuous sampled curves, by finding intersections
between line segments [3, 5]. A part of the literature deals
with this non-trivial task for self-intersection prevention
and topology changes in active contours, as in [7]. However,
self-intersections and self-tangencies are more conveniently
studied on digital 4-connected curves. When such a curve
crosses or overlaps itself, it necessarily contains several oc-
curences of the same point, which is straightforward to detect.

Instead of a naive implementation of the self-tangency
measure derived from Eq. (9), which would yield a O(ñ2)
complexity, it is computed in a single pass by storing
visited pixels in the discretized image domain D̃ and
detecting edges between adjacent pixels that were already
taken. Simultaneously, we check that the curve does not
contain points with multiplicity greater than 2. If such case
happens, the curve is most likely an irrelevant candidate
combination and its energy is set to +∞. In this way, we
make sure that the upcoming twisting term can be safely
computed. This simple method is summarized in Algorithm 2.

As regards the twisting measure, its computation basi-
cally implies to detect positive and negative crossings. Ide-
ally, a self-crossing involves a single point - put another way,
two curve positions - as depicted in Fig. 5(a) and 5(b). For a
positive (resp. negative) crossing, the curve arrives from the
right (resp. left) and leaves to the left (resp. right) at the same
point. However, due to the effect of discretization and the fact
that the curves rarely crosses itself orthogonally, intersections
with overlapping sections are more common, as depicted in
Fig. 5(c) and 5(d). Since only areas of inverted loops should
be considered to compute the twisting measure, regardless of
the overlap created by these inverted loops, we focus solely
on the events along the curve that helps to detect inverted
single and double loops, as previously shown in Fig. 10. Let
us consider that curve points are marked as long as the curve
is traveled. Two basic events can be detected:

– entrance: the curve comes from an unmarked area and
“enters” on a marked curve point

– leaving: the curve “leaves” a marked point and goes into
an unmarked area.

The entrance is kept as the event meaning that a loop is cre-
ated. It turns out that detecting left-sided events, i.e. the curve
leaves to the left or enters from the left, is sufficient to detect
simple and double inverted loops. At this stage, we safely as-
sume that the curve contains only points of multiplicity ≤ 2.

Algorithm 2 Self-tangency measure
func selfTangency(Γ̃ ) : R
input

Γ̃ : digital 4-connected curve, sequence of ñ points in Z2

variables

L ∈ R: length of self-tangent parts
M : D̃ 7→ N: array of visited positions
D : D̃ 7→ {TRUE,FALSE}: array indicating double points

L := 0
for all x ∈ D̃ do

M [x] := 0
D[x] := FALSE

end for
for i := 1 to ñ do

if M [Γ̃i] 6= 0 then

if D[Γ̃i] = FALSE then
j := M [Γ̃i]
D[Γ̃i] := TRUE
if Γ̃j+1 = Γ̃i+1 or Γ̃j−1 = Γ̃i+1 then

L := L + 1
end if

else
return +∞

end if
end if

M [Γ̃i] := i
end for

return
L

ñ

This property was previously checked during the computa-
tion of the self-tangency term in Algorithm 2. Suppose the
curves enters a previously marked curve point from the left
and denote the crossing by (i, j) such that Γ̃i is the “inter-
sected” point (the position where the curve was visited first)
and Γ̃j is the “intersecting” point (the current position). The
curve is traveled again from index i until j is met again (in
such case, the loop is simple) or a previous left-sided leaving
is met (in such case, the loop is double). Whether an event
is left-sided or not depends on the sign of the dot product
between the approximated normal at dcurvei and tangent
at Γ̃j ,

(Γ̃j − Γ̃j−1) · (Γ̃i − Γ̃i−1)⊥,

which should be positive for an entrance and negative for a
leaving. The extraction of sets of single loops SL and double
loops DL is detailed in Algorithm 3. The twisting measure is
then computed by applying the discrete Green’s theorem to
Eq. (11).

B.3 Computation of the best combination of paths

The optimization procedure described in Section 5.2 is
formalized in Algorithm 4. Variables emin-iter and emin are re-
spectively the current local minimum - the best combination
found at the current iteration - and the current global mini-
mum, i.e. the best configuration found since the beginning of
the procedure. A special case arises when emin-iter is infinite
at the end of the iteration, which happens when all tested
curves have a negative area or an infinite simplicity term. In
this case, the combination with the smallest area is selected
as the starting sequence for the next iteration. This allows to
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Algorithm 3 Extraction of single and double loops
func singleAndDoubleLoops(Γ̃ )
input

Γ̃ : digital 4-connected path, sequence of ñ points in Z2

output

SL: set of pairs of indices ⊂ N2

DL: set of double pairs of indices ⊂ (N2)2

variables
onCurve ∈ {TRUE,FALSE}
loopFound ∈ {TRUE,FALSE}
M : D̃ 7→ N: array of visited positions
Le ⊂ N2: set of indices indicating left-sided events

onCurve := FALSE
SL := ∅, DL := ∅, Le := ∅
for all x ∈ D̃ do

M [x] := 0
end for

for j := 1 to ñ do

if onCurve = FALSE then
if M [Γ̃j ] = 0 then

M [Γ̃j ] := j
else

onCurve := TRUE ; i := M [Γ̃j ]
if (Γ̃j − Γ̃j−1) · (Γ̃i − Γ̃i−1)⊥ > 0 then

Le := Le ∪ {(i, j)}
k := i + 1 ; loopFound := FALSE
while loopFound = FALSE do

if k = j then

loopFound := TRUE
SL := SL ∪ {(i, j)}

else

if ∃l s.t(k, l) ∈ Le then
loopFound := TRUE
DL := DL ∪ {((i, j), (k, l)}

end if
end if
k := k + 1

end while
end if

end if

else
if M [Γ̃j ] = 0 then

M [Γ̃j ] := j ; onCurve := FALSE ; i := M [Γ̃j−1]
if (Γ̃j − Γ̃j−1) · (Γ̃i − Γ̃i−1)⊥ < 0 then

Le := Le ∪ {(i, j)}
end if

end if

end if
end for

have the slowest dilation of the contour and hence reduces the
risk of skipping combinations that could be relevant. With a
view to conciseness, the energy of the current combination of
selected admissible paths E[γ1,x1 d γ2,x2 d . . . γn,xn ] is short-
ened to E(x1, . . . , xn). Similarly, the inner area of this com-
bination is shortened to A(x1, . . . , xn).
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