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ABSTRACT

Graph Distance Contest (GDC) was organized in the context of ICPR 2016. Its main challenge was
to inspect and report performances and effectiveness of exact and approximate graph edit distance
methods by comparison with a ground truth. This paper presents the context of this competition, the
metrics and datasets used for evaluation, and the results obtained by the eight submitted methods.
Results are analyzed and discussed in terms of computation time and accuracy. We also highlight
the future challenges in graph edit distance regarding both future methods and evaluation metrics.
The contest was supported by the Technical Committee on Graph-Based Representations in Pattern
Recognition (TC-15) of the International Association of Pattern Recognition (IAPR).

1. Introduction

Computing a similarity or a dissimilarity measure between
graphs is a major challenge in pattern recognition. One of the
most well-known and used approaches to compute a distance
between two graphs is the Graph Edit Distance (GED). Com-
puting the GED consists in finding a sequence of graph edit op-
erations (insertions, deletions and substitutions of vertices and
edges) which transforms a graph into another with a minimal
cost. However, computing the GED is NP-hard. Therefore,
in the last four decades, several approaches were proposed to
compute approximations in polynomial time (Riesen, 2015).

This paper reports the results of the Graph Distance Contest
(GDC) which was organized in the context of ICPR 2016. The
aim of the contest was to inspect performance and effectiveness
of recent methods which compute an exact or an approximate
GED. The quality of the output distances as well as the execu-
tion times of the methods were used as keys for the inspection.
Seven datasets were integrated, each of them being composed
of several types of graphs with symbolic or numerical attributes
attached to vertices and edges.

GDC was open to any method which computes a sequence of
edit operations transforming a graph into another one. All the
participants were required to download the datasets to prepare
the submission of their programs. All the programs were exe-
cuted by the organizers on the same computer. Two constraints
were put in the contest. First, each submitted method could not

exceed 30 s per graph comparison. Second, concerning parallel
methods, the number of threads was limited to 4.

This paper is organized as follows: Section 2 describes the
methods submitted to GDC. Then, Section 3 specifies the pro-
tocol and the datasets used for this contest. Obtained results are
presented and discussed in Section 4. Note that a complemen-
tary and exhaustive presentation of the results is provided on
GDC website http://gdc2016.greyc.fr. Last but not least,
Section 5 highlights the bottlenecks of both tested methods and
GED performance evaluation metrics, and proposes some pos-
sible tracks to go beyond these bottlenecks.

2. Inspected methods

Eight methods proposed by three different research groups
were submitted. The beam search algorithm of Neuhaus et al.
(2006) was also added to the list of inspected methods. All
these methods can be globally divided into three categories.

GED as linear or quadratic assignment problems. The GED
can be reformulated as a Quadratic Assignment Problem (QAP)
when the set of vertices of both graphs are extended enough
by null vertices to represent removal and insertions operations
(Cortés and Serratosa, 2013; Riesen, 2015; Bougleux et al.,
2017a). Since QAP are NP-hard in general, many approxi-
mation algorithms have been developed. In the GED, the no-
tion of bipartite GED has been introduced in Riesen and Bunke
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(2009). Based on the extended representation of the graphs,
the quadratic problem is replaced by a Linear Sum Assignment
Problem (LSAP) of their vertices, so that the cost of assigning
two vertices is defined as the GED between the star subgraphs
centered at these vertices. Richer graph structures were then
explored to capture less local dissimilarities (Gaüzère et al.,
2014; Carletti et al., 2015; Serratosa and Cortés, 2015). Given
a (n + m)× (m + n) extended cost matrix constructed from these
dissimilarities, the LSAP is solved in these works by Kuhn-
Munkres version of the Hungarian algorithm (Kuhn, 1955;
Munkres, 1957) in O((n + m)3) worst-case time complexity,
where n and m denote the order of the graphs. When costs
fulfill triangular inequality, there is no removal (n≤m) or no
insertion (n≥m), so the size of the LSAP can be reduced and
solved in O(max{n,m}3) time complexity with the same Hun-
garian algorithm (Serratosa, 2014, 2015). The LSAP is also
equivalent to a binary linear program (BLP) with (n + 1)(m + 1)
variables, which can be solved in O(min(n,m)2 max(n,m)) by
an adaption of Lawler version (Lawler, 1976) of the Hungarian
algorithm proposed in (Bougleux et al., 2017b) to this BLP. We
denote by LSAPE, the bipartite GED computed using this last
algorithm on a cost matrix defined from random walks of length
3 initiated on each node (Gaüzère et al., 2014). LSAPE was one
of the inspected methods in GDC.

Better approximations of the solution to QAP are obtained by
iterative optimization methods based on relaxation, linear ap-
proximation and gradient descent (Leordeanu et al., 2009; Liu
and Qiao, 2014), as experimented in (Bougleux et al., 2017a)
for the GED with the extended graphs. In particular, the integer
projected fixed point (IPFP) algorithm proposed in (Leordeanu
et al., 2009) provides an elegant extension of the bipartite GED
by refining the initial solution provided by the LSAP. The al-
gorithm iterates a projection to the closest binary solution and
a line search to find the next relaxed continuous solution, un-
til a fixed point is reached. Each projection step consists in
solving a LSAP, representing a 1st-order approximation of the
GED. In the contest, IPFP algorithm was tested for approxi-
mating the binary quadratic program reformulation of the GED
as proposed in (Bougleux et al., 2016). This reformulation,
named QAPE in this paper, considers (n + 1)(m + 1) variables
and IPFP refines the solution obtained by LSAPE. At each iter-
ation, the projection becomes a BLP, which is also computed in
O(min(n,m)2 max(n,m)) by the Hungarian algorithm proposed
in (Bougleux et al., 2017b). Note that due to a limitation of
LSAPE, QAPE is restricted to integer cost matrices.

Binary linear programming based approaches. A second fam-
ily of algorithms consists in using BLP for computing the GED.

In Justice and Hero (2006), a BLP formulation of the GED
has been proposed. This approach searches for the permuta-
tion matrix which minimizes the cost of transforming one graph
into another graph. The criterion to be minimized takes into ac-
count costs for matching vertices, but the formulation does not
process graphs whose edges are attributed.

Recently, BLP algorithms have been proposed to compute
the GED between attributed graphs (on both vertices and
edges). These algorithms were implemented using CPLEX
which is one of the best mathematical programming solvers. F2

in (Lerouge et al. (2017)), is an exact GED approach, which is
an extension of an earlier work proposed by the authors in (Ler-
ouge et al. (2016)). F2 was among the methods that participated
in GDC. In this model, two sets of binary variables were asso-
ciated to vertex-to-vertex matching and edge-to-edge matching,
respectively. Two types of constraints were introduced to rep-
resent the GED problem. The mapping constraints ensure that
each vertex of G1 is either mapped to exactly one vertex of G2
or deleted from G1 and that each vertex of G2 is either mapped
to exactly one vertex of G1 or inserted in G1. Second, the graph
topology in the mapping of vertices and edges was preserved
thanks to topological constraints. A cost is associated to each
mapping. The GED is then the minimum sum of mapping costs
among the feasible solutions that respect the constraints of the
BLP formulation.

In GDC, a parallel extension of F2 was put forward. This
algorithm, named F24Threads, is the same as F2 except that
CPLEX was set to run in a parallel manner with 4 threads.

The continuous relaxation of an Integer Linear Program
(ILP) is a Linear Program (LP) where the constraints are un-
modified but the variables are continuous. A lower bound of
F2, named F2LP, was proposed in Lerouge et al. (2017). The
time complexity could be reached in O(k3.5) with the interior
point method where k is the number of variables in the model.
In GDC, an upper bound was derived from F2LP by rounding
the continuous variables to the nearest integer. The obtained
solution may not be a feasible solution. A feasibility pump
heuristic (Glover and Laguna, 1997) is performed to generate
a feasible solution. The basic feasibility pump procedure de-
fines a (linear) distance function ∆(x, x̃) between two solutions
x and x̃. The feasibility pump procedure solves an integer lin-
ear program with an auxiliary objective function ∆(x, x̃) where
x̃ is a nearest-integer rounding from the optimal solution of the
continuous relaxation. The feasibility pump procedure tries to
generate a relaxed optimum which lies as close as possible to x̃.
This algorithm, also called F2LP, was part of GDC.

Branch-and-bound based approaches. The last family that par-
ticipated in GDC is the branch-and-bound one. The A∗-based
algorithm is considered as a foundation work for solving the
GED (Riesen et al. (2007)). The computations are achieved
by means of an ordered tree that is constructed dynamically
at run time by iteratively creating successor vertices. Only
leaf vertices correspond to complete matching operations. To
overcome the memory problem of A∗, a depth-first algorithm,
named DF, was proposed in (Abu-Aisheh et al. (2015b)). DF,
which also among the methods in GDC, contains two main
steps: The preprocessing and branch-and-bound steps. In the
preprocessing step, a first upper bound is calculated using the
bipartite graph matching algorithm (Riesen and Bunke (2009)).
Moreover, the vertices and edges cost matrices are constructed
to speed up the algorithm by getting rid of re-calculating the
assigned costs when matching the vertices and edges of the two
compared graphs. Once the preprocessing step finishes, the ex-
ploration of the search space starts in a depth-first way.

The search tree is pruned thanks to a heuristic which esti-
mates the future cost by substituting each of the n vertices of
G1 with any of the m vertices of G2. To obtain a lower bound
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of the exact edit cost, the costs of the min(n,m) least expen-
sive vertex substitutions are accumulated. To get rid of solv-
ing the minimization problem, the substitution costs are set to
zero. Thus, any of the selected substitutions is always cheaper
than a deletion or an insertion operation. However, the costs of
max(0, n − m) vertex deletions and max(0,m − n) vertex inser-
tions are accumulated. The unprocessed edges of both graphs
are handled independently from the vertices.

In GDC, an upper bound, called DFUB, was derived from
DF. DFUB has the two main steps of DF. However, the branch-
and-bound step differs from DF. When a first complete solution
is achieved, the algorithm terminates and outputs this solution
as a final one.

A parallel version of DF, named PDFS in the contest, was
proposed in (Abu-Aisheh et al. (2017)). A best-first strategy
is performed before starting to decompose the search tree into
sub-trees. Load balancing occurs when a thread finishes all its
assigned problems (i.e., partial matching). PDFS terminates
when all threads finish the exploration of their assigned prob-
lems. Each thread runs the depth-first algorithm on a part of
the problem to explore the solution space in parallel and thus to
discard misleading partial solutions.

A modification of A∗, called beam search (BS), was proposed
in (Neuhaus et al. (2006)). The purpose of BS, is to prune the
search tree while searching for a satisfactory solution. Instead
of exploring all the search space, at each iteration, the x most
promising partial solutions are kept in the set of promising can-
didates. In this contest, x was set to 100.

3. Protocol and datasets

Our evaluation is conducted on 4 Quad-Core AMD Opteron
processor 8350, cadenced at 2.0GHz together with 16GB mem-
ory. The maximum number of threads was limited to 4 (i.e., for
F24threads and PDFS). The time constraint used in GDC was
fixed to 30 s. That is, the methods that needed more than 30 s
were stopped, and the best answer found so far was outputted.
Note that F2, F24threads, DF and PDFS are exact algorithms
without time constraints.

3.1. Datasets and cost functions

Several datasets composed of graphs with symbolic and nu-
meric attributes were used in the experiments. Table 1 synthe-
sizes the characteristics of the first 5 datasets.

The first 4 datasets are composed of chemical compounds.
Alkane and PAH datasets correspond to molecules only com-
posed of carbons and may thus be considered as unlabeled
graphs. On the other hand, MAO and Acyclic are composed
of various types of atoms (carbons, oxygen, etc.). For these
four datasets, all graph pairwise comparisons were computed.
The cost of editing an element (a vertex or an edge) is given by:

c(a, b) = δ f (a)= f (b)cs, c(a, ε) = cd, c(ε, b) = ci (1)

where a and b are elements, f (a) is the label of vertex a or the
bound type of edge a. Note that δr = 1 if r is true or 0 else, cs

is the cost of substituting elements with a same attribute, and

Table 1. Characteristics of symbolic and numeric datasets

avg. (max)
Datasets Reference # graphs #nodes

Alkane

IAPR TC 15 (2013)

150 8.9 (10)
Acyclic 185 8.2 (11)
PAH 94 20.7 (28)
MAO 68 18.4 (27)
CMU Wang (2003) 111 30 (30)

cd and ci denote respectively the cost of deleting and insert-
ing an element. Three different combinations of these param-
eters have been tested (see Table 2): Vertex insertion/deletion
more expensive than vertex substitution (setting 1), vertex/edge
insertion/deletion more expensive than vertex/edge substitu-
tion (setting 2), and vertex/edge insertion/deletion cheaper than
node/vertex substitution (setting 3). These three settings aim at
favoring either substitution or deletion/insertion edit operations
and may exhibit if the performances of a same algorithm are
constant upon different cases.

CMU dataset was made up of 660 graph pairs which were
constructed from 111 images of a toy house captured from
9 different viewpoints. Each house was represented by 30
unattributed vertices while edges were attributed by the eu-
clidean distance (integer-valued) between them. Vertices sub-
stitutions were fixed to a zero cost and to +∞ for deletions and
insertions, hence forbidding them. Edit operations on edges
were penalized by the cost function:

c(ei, e j) = 0.5 |d(ei) − d(e j)|, c(e, ε) = c(ε, e) = 0.5 d(e) (2)

where d(e) is the distance associated to edge e.
To analyze the behavior of the submitted approaches when

the number of vertices increases, the well-known Mutagenicity
(or MUTA) and GREC datasets (Riesen and Bunke, 2008) were
considered but divided into disjoint subsets containing graphs
with a same number of vertices, as proposed in (Abu-Aisheh
et al., 2015a). The subsets are composed of graphs with 5, 10,
15 and 20 vertices, for GREC, and 10, 20, . . . , 70 vertices for
MUTA. Each subset is composed of 10 graphs, hence leading to
100 pairwise comparisons for each one. Since MUTA is com-
posed of chemical compounds, we used cost functions defined
by Eq. 1. The graphs of GREC have several attributes (both
symbolic and numerical) defined on vertices and edges. The
cost functions of GREC were defined as follows:

c(ei, e j) =


0, if f (ei) = f (e j) = 1 and T (ei) = T (e j)
15, if f (ei) = f (e j) = 1 and T (ei) , T (e j)
0, if f (ei) = f (e j) = 2
7.5, otherwise

c(vi, v j) =

0.5 deuc(pos(vi), pos(v j)), if T (vi) = T (v j) = 1
90 , otherwise

(3)
c(e, ε) = c(ε, e) = 7.5 f (e)
c(v, ε) = c(ε, v) = 45
where f is the frequency associated to edge e. T refers to the

type of edges/vertices and pos is the x, y position of vertex v.
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Table 2. Cost parameters for symbolic datasets
vertices edges

cs cd ci cs cd ci

Setting 1 2 4 4 1 1 1
Setting 2 2 4 4 1 2 2
Setting 3 6 2 2 3 1 1

3.2. Performance evaluation metrics

Let S be a graph dataset and let M denote the set of GED
methods listed in Section 2. Given a method m ∈ M, we com-
puted all the pairwise comparisons d(Gi,G j)m (except on CMU
as explained in Section 3.1), where d(Gi,G j)m is the edit dis-
tance computed using method m on the graph pair (Gi,G j) ∈ S2

under a time limit of 30 s.
A projection on a two-dimensional space (R2) was achieved

by using time-score (Eq. 8) and deviation-score (Eq. 7 which
measure performance in terms of computational time and accu-
racy, respectively. Note that both criteria must be minimized.
Given a dataset, mean deviation and mean computational time
were derived as follows:

devm
S

=
1

|S| × |S|

|S|∑
i=1

|S|∑
j=1

dev(Gi,G j)m ∀m ∈ M (4)

timem
S

=
1

|S| × |S|

|S|∑
i=1

|S|∑
j=1

time(Gi,G j)m ∀m ∈ M (5)

where time(Gi,G j)m is the run time required by m to compute
d(Gi,G j)m. The deviation dev(Gi,G j)m measures the distance
between d(Gi,G j)m and the best known solution RGi,G j (either
optimal or not). Note that for a given pair of graphs Gi and
G j, the distance provided in the ground truth is considered as
RGi,G j if it is either that optimal distance or if it is lower than all
the distances d(Gi,G j)m ∀m ∈ M. In the case where a method
m obtained a lower d(Gi,G j)m than the one in the ground truth,
d(Gi,G j)m is considered as RGi,G j . Moreover, since we compute
graph edit distance from an edit path encoded as a mapping, the
approximation computed by a method is always an overestima-
tion if it is not the exact graph edit distance. Therefore, the best
approximation is defined as the lowest one. Deviation is defined
as follows:

dev(Gi,G j)m =
d(Gi,G j)m − RGi,G j

RGi,G j

, ∀(i, j) ∈ J1, |S|K2 (6)

To obtain comparable results between databases, mean devi-
ations and times were normalized:

deviation scorem =
1

#subsets

∑
S∈subsets

devm
S

max devS
(7)

time scorem =
1

#subsets

∑
S∈subsets

timem
S

max timeS
(8)

where max devS and max timeS denote respectively the
maximal mean deviation and the maximal mean execution time
obtained among all methods on dataset S.

The computational time, measured in seconds, includes all
inherited costs computations and graphs parsing. We also count
if an exact edit distance has been computed by a given method
m on each graph pair. This metric is obviously only measured
on datasets which exact graph edit distance has been computed.

4. Results and discussion

In this section, we present and analyze the results obtained
by the submitted methods on all datasets. Table 3 summarizes
the GED methods that were included in GDC.

Table 3. Methods included in GDC
Acronym Reference Details

BS-100 Neuhaus et al. (2006) Beam-search of size 100
LSAPE Bougleux et al. (2017b) Linear Sum Assignment Problem

with Edition
QAPE Bougleux et al. (2016) Quadratic Assignment Problem

with Edition
F2 Lerouge et al. (2017) Exact binary linear programming

formulation
F24threads This paper Parallel version of F2

F2LP This paper Upper bound of F2
DF Abu-Aisheh et al. (2015b) Depth-first algorithm

DFUB This paper Upper bound of DF
PDFS Abu-Aisheh et al. (2017) Parallel version of DF

For the sake of clarity, we synthesize our different conclu-
sions via figures. For exhaustive and numerical results, we refer
the interested reader to the contest website: http://gdc2016.
greyc.fr.

4.1. Symbolic datasets

We ran all the methods on MUTA using the 3 Settings de-
scribed in Section 3.1. Since the results using Settings 1 and 2
were similar, we only report the results obtained using Settings
2 and 3.

Figure 1(a) sums up the running time (x-axis) and deviation
scores (y-axis) on MUTA. This plot allows to see the trade-off

between the running time required to compute an edit distance
and the accuracy of this approximation. One can see that the
average deviation of F24threads was the lowest (using Settings
2 and 3), which thus corresponds to the best method in terms of
accuracy. Considering the trade-off between speed and quality,
QAPE was the best candidate.

Figure 1(b) shows the percentage of computations of exact
graph edit distance (with or without optimality proof) using Set-
tings 2 and 3. One can see that the number of optimal solutions
found decreases as the size of graphs increases. However, F2
and F24threads were able to find more optimal solutions than
the other methods for a given size of graphs. The minimum
number of found optimal solutions was 10 which corresponds
to matching each graph with itself which is an easier problem.

Figure 1(c) depicts the average running time obtained on
MUTA subsets using Settings 2 and 3. We can note that the BLP
approaches (i.e., F2, F24threads and F2LP) required more time
when using Setting 2 than using Setting 3. This phenomenon,

http://gdc2016.greyc.fr
http://gdc2016.greyc.fr
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not observed on other methods, was induced by the topological
constraints of the F2-based methods which take into account
substitutions and not deletions and insertions. Thus, the more
insertions and deletions are required, the easier the constraints
are respected. One could also notice that on Muta-60 and Muta-
70, the running time of F2 and F24thread exceeded 30 s. This
was due to the fact that the chosen mathematical solver can-
not take the parsing phase into account when configuring the
time constraint. Thus, to go beyond this problem, F2’s partic-
ipants decided to limit the time constraint of these two meth-
ods to 28 s (instead of 30 s), leaving only 2 s to parse graphs.
However, when graphs exceeded 50 vertices, the parsing time
needed more than 2 s to compute which induced computational
times exceeding the time limit.

Figure 1(d) depicts the average deviation according to graph
size. Using Setting 2, one can see that F24threads was the best
method up to 40 vertices. On MUTA-50, 60 and 70, QAPE
outperformed F24threads since the latter was unable to out-
put satisfactory solutions. On the other hand, using Setting 3,
F24threads obtained the lowest estimations of the GED even
on graphs whose number of vertices was greater than 40. The
algorithm that obtained the second best estimations was QAPE.

Concerning the 4 chemical datasets (i.e., Acyclic, Alkane,
MAO and PAH), Settings 1, 2 and 3 did not significantly alter
the behavior of the methods, thus in this paper, only the results
of Setting 1 are reported. Figure 2 shows the trade-off between
deviation and time scores on the 4 chemical datasets. Similarly
to MUTA subsets, the more accurate approximations were ob-
tained by F24threads and F2. For a compromise between time
and accuracy, QAPE was a good candidate.

PAH represented the most challenging dataset since it is
composed of large unlabeled graphs. From Figure 2(d), we
can observe the difference in terms of computational time be-
tween F24threads, F2, DF and PDFS. Note that, in this case,
F24threads took advantage of parallelism, which allowed this
method to compute exact GEDs more often than the other meth-
ods. On this dataset, one can also notice a large difference
in computation time between BS, LSAPE, QAPE, and DFUB
methods on the one hand and F2, on the other hand. This
point might be explained by the fact that BS, LSAPE, QAPE
and DFUB aim at finding an approximate solution while F2,
F24thread, DF and PDFS search for an optimal one. The im-
portant execution time needed by PDFS was due to the inte-
grated misleading heuristic (Section 2) which was unable to
prune the search tree as fast as possible. However, on simpler
datasets, executions time of most methods was below 1 second.

On Alkane, Acyclic and MAO, composed of smaller graphs
than PAH, F2 and F24threads were able to compute an optimal
solution for any pair of graphs within 30 s (Figure 2). Note that
DF and PDFS methods were also very close to F2 and were
faster than F2 and F24threads on Alkane. Considering PAH,
F24threads obtained approximately 84% of optimal solutions,
followed by F2 with approximately 62% of optimal solutions.

4.2. Numeric datasets

Regarding the numeric datasets (i.e. CMU and GREC),
LSAPE and QAPE were not integrated in this part of GDC since

their current implementation could only match graphs the at-
tributes of which are symbolic. Figure 3(a) shows the trade-
off between computation time and deviation on GREC. As one
could see, all the methods (except DFUB) had a small devia-
tion. GREC is composed of graphs having at most 20 vertices,
which thus constitutes a tractable problem for all methods. Note
that F2 and F24threads always found the optimal solutions. On
the other hand, CMU was more challenging (see Figure 3(b)).
Indeed, most of the methods obtained a high deviation on this
database, except for F24threads which had the best results in
a comparable computation time with the other methods. Only
DFUB was significantly faster but at a cost of accuracy. Even
if F24threads’s deviation score was 0%, it was only able to
find approximately 51% of optimal solutions. Such an obser-
vation emphasizes the complexity of the GED problems on this
dataset. As a conclusion, F24threads represented a good com-
promise between deviation and running time on both CMU and
GREC.

4.3. General conclusions

As a conclusion of GDC, among the exact methods (i.e., F2,
F24threads, DF and PDFS), which output exact solutions when
they are not restricted by time constraints, F24threads consti-
tutes the best alternative. Indeed, this method always obtained
the exact solution of GED on small graphs and still obtains
a good percentage of exact edit distances when dealing with
graphs having more than 20 vertices.

On the other hand, approximate GED methods (i.e. LSAPE,
QAPE, F2LP, DFUB and BS) aim at providing a good ap-
proximation in a reduced computational time. Among these
methods, QAPE usually obtained the best GED approximation
within a reasonable computational time. Moreover, QAPE may
find the optimal solution for many pairs of graphs. However, it
cannot give any guarantee of the optimality of its result.

5. Challenges in graph edit distance

In this section, we present and discuss perspectives of eval-
uated methods and GED challenges upcoming in the near fu-
ture. Regarding the 3 inspected GED categories, the branch-
and-bound based algorithms are highly dependent on the lower
bound. These algorithms could be improved by proposing other
promising lower bounds with the help of machine learning tech-
niques. On the other hand, currently, the implementation of
the assignment-based algorithms cannot handle graphs with nu-
meric attributes.

The BLP-based approaches were solved by off-the-shelf
mathematical solvers for which the exploration of the solu-
tion space is not mastered by the user. It might be interest-
ing to explore how the solving could benefit from the knowl-
edge brought by approximate methods that can be computed in
a small time. On the one hand, the early injection of upper and
lower bounds provided by approximate methods could help to
drastically prune the tree of solutions. On the other hand, even
if they are not optimal, the assignments provided by approxi-
mate methods could be good start points in the search for an
optimal solution.
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(b) Number of optimal solutions according to graph sizes on MUTA subsets
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(c) Computation time according to graph sizes on MUTA subsets
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Fig. 1. Scores obtained on MUTA Datasets.
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(a) Acyclic
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(b) Alkane
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(c) MAO
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(d) PAH

Fig. 2. Speed versus deviation scores on chemical datasets using Setting 1

Both exact and approximate GED approaches have common
challenges, particularly in reducing computational time and
consequently matching larger graphs. Considering approximate
approaches, one direction may be to keep a nearly constant ap-
proximation error to obtain a reasonable confidence interval on
the computed edit distance. Note that BLP-based approaches
reached the highest accuracy on almost all datasets in our ex-
periments. On this basis, it would be interesting to use other
Operations Research techniques to solve GED. For instance,
heuristics based on mathematical programming could be inves-
tigated to break down a given problem into a sequence of sub-
problems solved optimally.

Regarding GDC, the time constraint was arbitrary fixed to 30
s. One could relax or increase this time constraint to explore
how methods are acting in different conditions, or, more pre-
cisely, study the deviation as a function of time. For instance,
such a study will be very interesting for BLP-based methods to
find a good trade-off according to accuracy vs time constraints
of users.

Generally, in GED, there is a lack of challenging and real-
world datasets. As demonstrated in this paper, GED computa-
tion on GREC is easily solved by most of tested methods. On
the other hand, MUTA, PAH and CMU were more challeng-
ing. It is of great interest to have more various types of datasets
(e.g., big, dense and irregular graphs) that are dedicated to real-

world applications (e.g., documents, social networks and object
tracking). Moreover, in GDC, the ground truth is not always
provided. It would be better to have datasets with their ground
truth so as to be compare computed approximations to exact
graph edit distance and not the best approximation.

Based on the aforementioned challenges, one could see that
there exist different ways to improve GED computation. How-
ever, beyond that, one should take into account the reason why
we need to compute GED (e.g., classification, matching or clus-
tering problems). In this paper, we focused on just one chal-
lenge of GDC (i.e. at the matching level) and not on its use to
resolve a given problem. A future contest should focus on the
evaluation of GED approximations to classification or cluster-
ing problems. Moreover, each kind of problems could raise the
issue of learning cost functions. Since GED is a minimization
problem, the selected functions as well as the parameter values
are not necessarily adapted with the user’s provided solution.
In other words, the user’s vertex-to-vertex matching may not
be the minimum solution found by a GED method. Recently,
Cortés and Serratosa (2016) have proposed to learn the param-
eters of cost functions based on the vertex-to-vertex matching
provided by users. This approach is interesting since it shows
the applicability of GED methods in real-world applications.
On this basis, one could add visualizing the matching results as
a performance evaluation metric to judge whether or not the
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(b) CMU

Fig. 3. Average deviation-running time scores

matching results are relevant after taking the users’ point of
view into account.
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Graph edit distance as a quadratic assignment problem. Pattern Recognition
Letters 87, 38–46.
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