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ABSTRACT

The Graph Edit Distance (GED) is a flexible measure of dissimilarity between graphs which arises
in error-correcting graph matching. It is defined from an optimal sequence of edit operations (edit
path) transforming one graph into another. Unfortunately, the exact computation of this measure is
NP-hard. In the last decade, several approaches were proposed to approximate the GED in polyno-
mial time, mainly by solving linear programming problems. Among them, the bipartite GED received
much attention. It is deduced from a linear sum assignment of the nodes of the two graphs, which can
be efficiently computed by Hungarian-type algorithms. However, edit operations on nodes and edges
are not handled simultaneously, which limits the accuracy of the approximation. To overcome this lim-
itation, we propose to extend the linear assignment model to a quadratic one. This is achieved through
the definition of a family of edit paths induced by assignments between nodes. We formally show that
the GED, restricted to the paths in this family, is equivalent to a quadratic assignment problem. Since
this problem is NP-hard, we propose to compute an approximate solution by adapting two algorithms:
Integer Projected Fixed Point method and Graduated Non Convexity and Concavity Procedure. Ex-
periments show that the proposed approach is generally able to reach a more accurate approximation
of the exact GED than the bipartite GED, with a computational cost that is still affordable for graphs
of non trivial sizes.

1. Introduction

The definition of efficient and general similarity or dissim-
ilarity measures between attributed graphs is a key problem
in structural pattern recognition. This problem is nicely ad-
dressed by the graph edit distance (GED), which constitutes one
of the most flexible dissimilarity measures between attributed
graphs (Tsai and Fu, 1979; Bunke and Allermann, 1983; San-
feliu and Fu, 1983; Bunke, 1999; Neuhaus and Bunke, 2007a;
Solé-Ribalta et al., 2012; Riesen, 2015). The GED is based
on the notion of edit path, which is defined as a sequence of
edit operations transforming a graph into another. In this paper,
graphs are assumed to be simple and attributed, and edit opera-
tions are restricted to be elementary: insertion or removal of a
node or an arc, or substitution of a label. Each edit operation
oi is penalized by a real non-negative cost ce(oi). An edit path
P = (o1, . . . , ok) is then associated to an amount of distortion re-
quired to transform a graph G1 into a graph G2. This amount is

defined as the sum of the costs of its edit operations:

γ(P) =

k∑
i=1

ce(oi). (1)

An edit path having a minimal cost, among all edit paths trans-
forming G1 into G2, is called a minimal edit path. Its cost rep-
resents the minimal amount of distortion required to transform
G1 into G2, and is called the graph edit distance from G1 to G2.

Computing the GED is thus a minimal path problem. This
problem is NP-complete. It is classically solved by retrieving a
minimal edit path with a tree search algorithm, for instance the
A∗-based algorithm described by Neuhaus et al. (2006). Such
algorithms have an exponential time complexity, so they can be
applied on very small graphs only, generally composed of no
more than 12 nodes. Several heuristics have been proposed to
improve the execution time of the A∗-based algorithm (Neuhaus
et al., 2006; Riesen et al., 2007a; Fischer et al., 2014). These
heuristics generally lead to suboptimal estimations of the GED.
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Another class of methods consists in rewriting the GED as
a quadratic or a linear program. Justice and Hero (2006) pro-
posed to model the GED as a binary linear program (BLP), re-
stricted to undirected graphs with labeled nodes and unlabeled
edges. The relaxation of this BLP provides a lower bound of
the GED which cannot be readily associated to an edit path. An
upper bound is also obtained by restricting edit operations to
nodes only. It is expressed as a square linear sum assignment
problem (LSAP), i.e. a minimal-cost bipartite graph matching
problem, where the matching of two nodes corresponds to a
substitution, a removal or an insertion. Such a bipartite match-
ing should be called an error-correcting set matching. While
this problem can be efficiently solved in polynomial time com-
plexity, for instance with the Hungarian algorithm, it does not
include any structural information. This linear approximation
of the GED has been greatly improved by Riesen et al. (2007b)
and Riesen and Bunke (2009) by considering graphs with at-
tributed nodes and edges, and by replacing the cost of editing
a node by the cost of editing the 1-star graph centered at this
node. In particular, the cost of substituting a star graph by
another one is also expressed as the solution of a LSAP. The
resulting approximation, called the bipartite GED, has been ex-
tended and improved in several ways (Fankhauser et al., 2011;
Serratosa, 2014; Riesen et al., 2014a; Riesen and Bunke, 2015;
Riesen et al., 2015; Ferrer et al., 2015). For instance by consid-
ering larger substructures or bags of substructures (Zeng et al.,
2009), (Gaüzère et al., 2014), Carletti et al. (2015), or by im-
proving the resulting edit path by genetic algorithms (Riesen
et al., 2014b).

Since the bipartite GED is based on a linear approximation of
the GED, the quality of the approximation is inherently limited.
To fully address the GED problem both node and arc assign-
ments should be considered simultaneously. Indeed, operations
performed on nodes may induce operations on arcs. For exam-
ple, a node removal induces the removal of all its incident arcs.
Our optimization process should thus not take only into account
the individual costs of node operations but also the relationships
between these node operations and the operations applied on
the pairs of nodes encoding arcs. This pairwise constraint on
nodes is closely related to the one involved in the graph match-
ing problem. It is known that graph matching problems, and
more generally problems that incorporate pairwise constraints,
can be cast as a quadratic assignment problem (QAP) (Koop-
mans and Beckmann, 1957; Lawler, 1963, 1976; Loiola et al.,
2007; Burkard et al., 2009). These problems are usually NP-
hard and different relaxation algorithms have been proposed to
find approximate solutions. We can quote among many exam-
ples, the Integer Projected Fixed Point (IPFP) (Leordeanu et al.,
2009), the Graduated Non Convexity and Concavity Procedure
(GNCCP) (Liu and Qiao, 2014) or the Factorized Graph Match-
ing (Zhou and De la Torre, 2012).

The GED has been approximated as a binary quadratic prob-
lem by Neuhaus and Bunke (2007b) which restricts edit op-
erations to node substitutions and edge operations induced by
these substitutions. Node removals and insertions are thus not
taken into account in the optimization process. Moreover, as
the problem is relaxed and the result of the minimization pro-

cess does not provide an edit path with a minimal cost, but a set
of fuzzy edit paths. A greedy procedure is then proposed to ob-
tain an edit path, the cost of which provides an approximation
of the GED.

In this paper, we extend the linear framework proposed by
Riesen et al. (2007b); Riesen and Bunke (2009) to a quadratic
one. First, preliminary results concerning edit paths are estab-
lished (Sec. 2). These results allow us to formalize the relation-
ships between LSAP (Sec. 3) or QAP (Sec. 4) and such paths.
In particular, we show that the GED is a QAP when graphs
are simple. Then, we propose to adapt IPFP and GNCCP al-
gorithms to the approximation of the GED (Section 5). Ex-
perimental results (Sec. 6) show that the proposed approach
generally provides more accurate approximations than bipartite
GED and than the quadratic approach of (Neuhaus and Bunke,
2007b), with a computational cost still affordable for graphs of
non trivial sizes.

2. Restricted edit paths

We assume that graphs are simple, directed or undirected,
and attributed. In order not to overload our notations, attributes
are implicitly taken into account by cost functions defining the
graph edit distance. A graph G is thus simply defined by a pair
G = (V, E), assuming the implicit definition of attributes on the
set of nodes V and the set of arcs E.

2.1. Edit operations, edit paths and graph edit distance
A graph G1 = (V1, E1) can be transformed into another graph

by elementary edit operations consisting of removals, substitu-
tions and insertions of both nodes and arcs. However, in order
to insure that any sequence of edit operations produces a valid
graph without dangling arcs we have to introduce the two fol-
lowing constraints:

C1 A node can be removed only if its incident arcs have been
previously removed.

C2 An edge can be inserted only if its terminal nodes exist or
have been previously inserted.

A sequence of edit operations fulfilling the above constraints
is called an edit path. Let P(G1,G2) be the set of edit paths
transforming G1 into G2. As mentioned in Section 1, each el-
ementary edit operation is associated to a cost. The cost of an
edit path P ∈P(G1,G2) is simply defined as:

γc(P) =
∑
o∈P

c(o), (2)

Intuitively γc(P) measures the amount of distortions required
by P in order to transform G1 into G2. A path having a minimal
cost is called a minimal edit path. This last cost which corre-
sponds to the minimal amount of distortion required to trans-
form G1 into G2 is called the graph edit edit distance (GED)
from G1 to G2:

GED(G1,G2, c) = min
P∈P(G1,G2)

γc(P). (3)

Using positive costs, edit paths only constrained by C1 and
C2 may contain many sequences of edit operations which can
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not lead to a minimal edit path. In order to avoid such sub
sequences we additionally introduce the following constraints:

C3. A node or an arc cannot be substituted and then removed.
C4. A node or an arc cannot be inserted and then substituted.
C5. A node or an arc cannot be inserted and then removed.
C6. A node or an arc is substituted at most once.

Constraints C3 to C6 forbid to apply an operation the effect of
which will be partially or completely removed by an ulterior
operation. For example, constraint C4 forbids to insert an ele-
ment with a wrong label and then to correct it by a substitution.
Let Pm(G1,G2) be the set of edit paths transforming G1 into
G2, and satisfying constraints C1 to C6. This set of edit paths
still includes paths having a minimal cost. Given an edit path
P, constraints C3 to C6 allow to reorder the sequence of edit
operations in P into an equivalent sequence (R, S , I) which first
performs all removals (R), then all substitutions (S ) and finally
all insertions (I) (Bougleux et al. (2015)). The order in each sub
sequences are deduced from the one of P.

G1
R
−→ Ĝ1

S
−→ Ĝ2

I
−→ G2 (4)

By construction, Ĝ1 = (V̂1, Ê1) is a subgraph of G1, while
Ĝ2 = (V̂2, Ê2) is a subgraph of G2. The set of substitutions S
induces a structural isomorphism between Ĝ1 and Ĝ2. We have
thus in particular a bijective mapping ϕ : V̂1→ V̂2 establishing
the correspondence between nodes of both subgraphs. More-
over, the nodes removed by P correspond to V1 \ V̂1, and the
nodes inserted by P correspond to V2 \ V̂2. Therefore, all the
operations applied on nodes are encoded by ϕ, this last prop-
erty being independent from edit costs.

However, such a correspondence between node operations
and the mapping function ϕ does not work for arcs. Indeed,
let us consider two substituted nodes ui and u j belonging to V̂1
such that ϕ(ui) = vk and ϕ(u j) = vl. Let us further suppose that
ei j = (ui, u j) ∈ E1 and ekl = (vk, vl) ∈ E2. We have then two
solutions to transform ei j into ekl while still fulfilling constraints
C1 to C6:

• ei, j is substituted by ek,l, or remains unchanged, or
• ei, j is removed and then ek,l is inserted.

So several edit paths of Pm(G1,G2) are induced by ϕ. In order
to remove such ambiguities, the set of all possible edit paths
must be further restricted.

2.2. Restricted edit paths

Let G1 and G2 be two graphs, and let P be an edit path of
Pm(G1,G2) (satisfying constraints C1 to C6). Path P is re-
stricted if it also matches the following constraint:

C7. Any arc between two substituted nodes cannot be removed
and then inserted.

Such an additional constraint removes the previous ambiguity
by forcing the substitution of an edge when an ambiguity oc-
curs. Let Pr(G1,G2) be the set of all restricted edit paths from
G1 to G2. Then the following property (Bougleux et al., 2015)
shows the main interest in using the additional constraint C7:

ε
1

ε2 ε3 ε 4

ε
1

ε2 ε3 ε 4

ψ −1
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1 2 3 4 ε5 ε ε6 7
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ε
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Fig. 1. A node assignment taking into account removals/insertions.

Proposition 1. There is a one-to-one correspondence between
the set of restricted edit pathsPr(G1,G2) and the set of injective
functions from a subset of V1 to V2.

Note that such an injective function ϕ defines a bijection from
from a subset V̂1 of V1 onto a subset V̂2 =ϕ[V1] of V2.

Constraint C7 restricts the set of edit paths by forcing the
substitution of some edges instead of their removal followed
by their reinsertions. However, using some specific cost func-
tions, the removal of an edge followed by its re insertion may
be cheaper than its substitution. In such a case the computa-
tion of the minimal restricted edit path will not coincide with
the same computation on the whole set of edit paths. However,
this last drawback may be easily avoided by setting a new edge
substitution cost equal to the minimum between the initial edge
substitution cost and the sum of the costs of an edge removal
followed by an edge insertion. In the rest of the paper, we as-
sume that this initial setting is always performed when needed.
Note that this operation is only applied on edge costs.

The two following sections show the relation between re-
stricted edit paths and assignment problems.

3. ε-assignments, LSAP, bipartite GED and edit paths

As introduced in Section 1, the GED can be approximated by
solving LSAPs (Riesen et al., 2007b; Riesen and Bunke, 2009,
2015). Since this framework is extended to quadratic assign-
ments in the following section, it is first detailed and linked to
restricted edit paths.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, with
V1 = {1, . . . , n} and V2 = {1, . . . ,m} to simplify the forthcoming
expressions. Following Riesen and Bunke (2009) and in or-
der to apply removal or insertion operation on nodes, node sets
are augmented by dummy elements. The removal of each node
i ∈V1 is modeled as a mapping i→ εi where εi is the dummy
element associated with i. As a consequence, the set V2 is
increased by n dummy elements E2 = {ε1, . . . , εn} to form the
set Vε

2 = V2 ∪E2. The node set V1 is increased similarly by
m dummy elements E1 = {ε1, . . . , εm} to represent the insertion
of each node j ∈V2 as a mapping ε j→ j. This defines the set
Vε

1 = V1 ∪E1. Note that these two sets have the same cardinal-
ity n + m (Fig. 1). We assume, without loss of generality, that
symbols εi and ε j represent integers, i.e. E1 = {n + 1, . . . , n + m}
and E2 = {m + 1, . . . ,m + n}.

It is now possible to define a bijective mapping ψ : Vε
1→Vε

2 ,
here a permutation, such that for each element of Vε

1 one of the
four following cases occurs:

1. Substitutions: ψ(i) = j with (i, j) ∈V1 ×V2.
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2. Removals: ψ(i) = εi with i ∈V1.
3. Insertions: ψ(ε j) = j with j ∈V2.
4. Finally ψ(ε j) = εi allow to complete the bijective property

of ψ, and thus should be ignored. This occurs when i ∈V1
and j ∈V2 are both substituted.

Note that mappings i→ εk with k, i, and mappings ε j→ l with
l, j, are forbidden. We call such a bijective mapping an ε-
assignment, and the set of all ε-assignments from Vε

1 onto Vε
2 is

denoted by Ψε(V1,V2).
The selection of a relevant ε-assignment is achieved through

the design of a pairwise cost function adapted to edit operations
on nodes. To this, each possible mapping of an element i ∈Vε

1
to an element j ∈Vε

2 is penalized by a non-negative cost ci, j. All
the costs can be encoded by a (n + m)× (m + n) matrix

C =

1 · · ·m ε1 · · · εn



1
Csub Crem

...
n
ε1

Cins 0m,n
...
εm

(5)

where the matrix Csub ∈ [0,+∞)n×m encodes substitution costs,
Crem ∈ [0,+∞)n×n encodes removal costs, and Cins ∈ [0,+∞)m×m

encodes insertion costs. According to cases 2 and 3 above, off-
diagonal values of Crem and Cins are typically set to a large value
ω satisfying max{ci,ψ(i) | ∀i,∀ψ ∈Ψε(V1,V2)}�ω<+∞, in or-
der to avoid forbidden mappings. Finally, according to case 4,
the mapping of any εi to an ε j should not induce any cost, so the
last block of C is set to the null matrix 0m,n.

The cost of an ε-assignment ψ is defined as the sum of all
pairwise costs ci,ψ(i). The bipartite GED is then defined in two
main steps (Riesen et al., 2007b; Riesen and Bunke, 2009).
First, an ε-assignment having a minimal cost, among all pos-
sible ε-assignments, is determined:

ψ̂ ∈ argmin
ψ

n+m∑
i=1

ci,ψ(i) | ψ ∈Ψε(V1,V2)

 (6)

In a second step, an edit path is defined from the optimal ε-
assignment ψ̂. The cost of this path defines the bipartite GED
from G1 to G2. This second step being automatic, the cost of
the final edit path and thus the relevance of the bipartite GED
is determined by the definition of the pairwise costs encoded
by C. As introduced in Section 1, a common solution to guide
the LSAP step towards the construction of a low cost edit path
consists in attaching to each node information about its neigh-
borhood through the construction of bags of patterns attached
to each node. The matrix C is then designed to encode the costs
related to the substitution, removal or insertion of these bags of
patterns.

Eq. 6 corresponds to a LSAP which can be efficiently solved
in polynomial time complexity by using Hungarian-type algo-
rithms (see (Burkard et al., 2009) for more details). In order
to apply such algorithms we first need to write ε-assignments

in matrix form. Since an ε-assignment ψ corresponds to a bi-
jection from Vε

1 to Vε
2 , it can be represented by a permutation

matrix X ∈ {0, 1}(n+m)×(n+m), such that xi, j = 1 iff j =ψ( j), and 0
otherwise. Remember that a (n + m)× (n + m) permutation ma-
trix X satisfies the doubly stochastic and binary constraints:

(X1n+m = 1n+m) ∧
(
XT 1n+m = 1n+m

)
∧

(
X ∈ {0, 1}(n+m)×(n+m)

)
.

(7)

The permutation matrix associated to an ε-assignment has the
following form:

X =

(
Xsub Xrem

Xins Xε

)
∈ {0, 1}(n+m)×(n+m), (8)

where matrix Xsub ∈ {0, 1}n×m encodes node substitutions,
Xrem ∈ {0, 1}n×n encodes node removals, and Xins ∈ {0, 1}m×m en-
codes node insertions. Matrix Xε ∈ {0, 1}m×n is an auxiliary ma-
trix (case 4 above), it ensures that X is a permutation matrix.
Due to the constraints on dummy nodes (cases 2 and 3 above)
matrices Xrem and Xins always satisfy:

∀(i, j) ∈ {1, . . . , n}2, i , j, xrem
i, j = 0

∀(i, j) ∈ {1, . . . ,m}2, i , j, xins
i, j = 0

(9)

In this paper, a (n + m)× (m + n) matrix satisfying equations 7,
8 and 9 is called an ε-assignment matrix. The set of all ε-
assignment matrices is denoted byAn,m.

Auxiliary matrix Xε suggests the definition of an equivalence
relation between ε-assignment matrices. Two ε-assignment ma-
trices X1 and X2, defined by the two sequences of block matri-
ces (Xsub

1 ,Xrem
1 ,Xins

1 ,Xε
1) and (Xsub

2 ,Xrem
2 ,Xins

2 ,Xε
2), are equiva-

lent if and only if

(Xsub
1 = Xsub

2 ) ∧ (Xrem
1 = Xrem

2 ) ∧ (Xins
1 = Xins

2 ). (10)

The set of ε-assignment matrices up to this equivalence relation
is denoted byA∼n,m (Xε is not considered). Note that this relation
does not depend on edit costs.

The relation between ε-assignment matrices and mapping
functions between two node sets V1 and V2 is clarified as fol-
lows. The proof can be found in (Bougleux et al., 2015).

Proposition 2. There is a one-to-one relation between A∼n,m
and the set of injective functions from a subset of V1 to V2.

By using Proposition 1, we can connect such a mapping to a re-
stricted edit path from G1 to G2. Up to the equivalence relation
(Eq. 10), there is thus a one-to-one correspondence between ε-
assignment matrices and restricted edit paths.

Also, note that two equivalent ε-assignment matrices have a
same cost since the block associated to Xε in C is equal to 0m,n.
We consider the vectorized version of the LSAP given by:

argmin
x

{
cT x | x ∈ vec[An,m]

}
(11)

where vector c = vec(C) ∈ [0,+∞](n+m)2
is the vectorization of

cost matrix C obtained by concatenating its rows, similarly
x = vec(X) ∈ {0, 1}(n+m)2

, and vec[An,m]⊂ {0, 1}(n+m)2
is the set of

all vectorized ε-assignment matrices.
In our experiments, we have used a O(n3) version of the Hun-

garian algorithm that explictly takes into account Eq. 9, instead
of imposing large ω values.
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4. GED as a quadratic assignment problem

As mentioned in Section 3 bipartite GED methods deduce
the final edit path and thus the set of arc edit operations from
an LSAP defining an assignment between the nodes of both
graphs. However, the simultaneous assignment of two adjacent
nodes should obviously have an influence on the operation ap-
plied on the arc connecting them. In return, the cost of this arc
operation should influence the type of operation applied on its
incident nodes. This is not the case in bipartite GED methods
which thus find an optimal solution of an approximation of the
initial problem. Taking into account simultaneously node and
arc assignments can be formalized as a quadratic assignment
problem. In this section, we propose to extend the linear model
to a quadratic one based on ε-assignments, and we show that
this model corresponds to the cost of a restricted edit path.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs, and
let ψ ∈Ψε(V1,V2) be an ε-assignment as defined in Sec-
tion 3. When a pair (i, j) ∈Vε

1 ×Vε
1 is assigned by ψ to a pair

(ψ(i), ψ( j)) ∈Vε
2 ×Vε

2 , one of the following cases occurs:

1. Arc substitution: (ψ(i), ψ( j)) ∈ E2 with (i, j) ∈ E1.
2. Arc removal: (ψ(i), ψ( j)) < E2 with (i, j) ∈ E1.
3. Arc insertion: (ψ(i), ψ( j)) ∈ E2 with (i, j) < E1.
4. Finally (ψ(i), ψ( j)) < E2 with (i, j) < E1 allows to complete

the bijection property.

Note that by definition any vertex of E1 (resp. E2) is not adja-
cent to any vertex of V1 (resp. V2).

Each possible simultaneous mapping of nodes i, j ∈Vε
1 onto

respectively nodes k and l in Vε
2 , is penalized by a non-negative

cost dik, jl which depends on the underlying edit operation de-
scribed by one of the cases above. The overall arc cost associ-
ated to a simultaneous node assignment is then measured by:

d(ψ) =

n+m∑
i=1

n+m∑
j=1

diψ(i), jψ( j), (12)

where cost values are defined as follows.
Remember that all mappings from a node of Vε

1 to a node of
Vε

2 are not allowed. Indeed (Section 3), i→ ε j with i ∈V1 and
j, i, and reciprocally εk→ l with l ∈V2 and k, l are forbidden.
Then, a simultaneous node mapping involving at least one of
these two cases is also forbidden. We denote by 9 a forbidden
mapping. As in Section 3, the cost is set to a (large) value ω in
this case.

For any other simultaneous node mapping (i→ k, j→ l), with
i, j ∈Vε

1 and k, l ∈Vε
2 , its cost depends on the presence or the

absence of arcs (i, j) ∈ E1 and (k, l) ∈ E2:

• If (i, j) ∈ E1 and (k, l) ∈ E2 then dik, jl is the cost of the arc
assignment (i, j)→ (k, l), i.e. arc substitution.

• If (i, j) ∈ E1 and (k, l) < E2 then dik, jl is the cost of removing
the arc (i, j).

• If (i, j) < E1 and (k, l) ∈ E2 then dik, jl is the cost of inserting
the arc (k, l).

• Else, the simultaneous mapping must not influence the
overall cost and so its cost is set to 0.

By using the edit cost function ce, the cost of an allowed simul-
taneous node mapping is then defined by

ce(i→ k, j→ l) = ce ((i, j)→ (k, l)) δ(i, j)∈E1δ(k,l)∈E2

+ ce ((i, j)→ ε) δ(i, j)∈E1 (1− δ(k,l)∈E2 )
+ ce (ε→ (k, l)) (1− δ(i, j)∈E1 )δ(k,l)∈E2

with (i, j) ∧ (k, l)

(13)

where δe ∈ E = 1 if e ∈ E and 0 otherwise, (i, j)→ ε denotes arc
removal and ε→ (k, l) denotes arc insertion. When i = k or j = l,
then dik,ik = 0. Note also that the potential symmetry of ce(i →
k, j → l) depends both on the one of edit operations and on the
symmetry of graphs when they are directed.

Finally, the cost of a simultaneous node mapping is given by

dik, jl =

ω if (i9 k) ∨ ( j9 l)
ce(i→ k, j→ l) else

(14)

Let x ∈ vec[An,m]⊂ {0, 1}(n+m)2
be the vectorization of the

ε-assignment matrix associated to ψ. All costs can be rep-
resented by a (n + m)2 × (n + m)2 matrix D = (dik, jl)i,k, j,l with
dik, jlxik x jl = diψ(i), jψ( j) if xik = x jl = 1, and 0 else. So each row
and each column of D, and x, have the same organization of
pairwise indices, and then the total cost of the simultaneous
node assignment can be written in quadratic form as:

d(ψ) =

n+m∑
i=1

m+n∑
k=1

n+m∑
j=1

m+n∑
l=1

dik, jlxik x jl = xT Dx,

To fully represent edit operations, the cost cT x of the map-
ping between nodes (Sec. 3) is also considered. Here costs are
defined directly from the initial edit cost function:

csub
i,k = ce(i→ k)

crem
i,k =

 ce(i→ εi) if k = i

ω else

cins
i,k =

 ce(εk→ k) if i = k

ω else

(15)

According to the following result, summing the quadratic and
the linear costs defined above leads to the cost of a restricted
edit path, see (Bougleux et al., 2015) for a proof.

Proposition 3. Given an ε-assignment x ∈ vec[An,m], any non-
infinite value of 1

2 xT ∆x + cT x is equal to the cost of a restricted
edit path, and conversely, where ∆ = D + DT if graphs are di-
rected, or ∆ = D if graphs are undirected.

Hence, the determination of a restricted edit path with a mini-
mal cost is equivalent to find an ε-assignment having a minimal
quadratic cost. In other words, for the class of graphs under
consideration, i.e. simple graphs, we have

GED(G1,G2) = min
x

{
1
2

xT ∆x + cT x | x ∈ vec[An,m]
}

(16)

This is a QAP, see (Lawler, 1963; Burkard et al., 2009) for more
details on QAPs. In particular, QAPs are NP-hard and exact al-
gorithms can solve QAPs of small size only. So, many heuris-
tics enable to find suboptimal solutions in short computing time
have been explored.
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Algorithm 1 IPFP(x, c,∆)
1: while a fixed point is not reached do
2: b∗ ← argmin{(xT ∆ + cT )b | Ab = 1, b ∈ {0, 1}(n+m)2

}

3: t∗ ← argmin {S (x + t(b∗ − x)) | t ∈ [0, 1]}
4: x← x + t∗(b∗ − x)
5: end while

Let’s recall that graphs G1 and G2 may be both directed or
both undirected. When graphs are directed, Note that ∆ is sym-
metric by definition (Proposition 3). When graphs are undi-
rected, as long as the edit cost function is symmetric, D and
thus ∆ are always symmetric (Bougleux et al., 2015). So, the
same algorithms can be used to approximate the GED of undi-
rected graphs and the GED of directed ones.

5. Algorithms approximating the GED

5.1. IPFP algorithm

Integer Projected Fixed Point (IPFP) is an algorithm initially
proposed by Leordeanu et al. (2009) to find a solution to the
quadratic assignment problem in the context of weighted graph
matching and MAP inference (maximization problems). The
adaptation of this algorithm to the GED consists in finding a
permutation (from Eq. 16):

argmin
x

{
S (x) def.

=
1
2

xT ∆x + cT x | Ax = 1, x ∈ {0, 1}(n+m)2
}
(17)

where Ax = 12(n+m), with A ∈ {0, 1}2(n+m)×(n+m)2
, is the matrix

version of the bijectivity constraints given by Eq. 7.
A common approach to find an approximate solution to a

QAP consists in relaxing the constraints by searching for a con-
tinuous solution instead of a discrete one:

argmin
x

{
S (x) | Ax = 1, x≥ 0(n+m)2

}
. (18)

The algorithm proposed by Leordeanu et al. (2009) tries to find
a solution to both problems. Given an initial continuous or
binary candidate solution x0, it improves (here reduces) itera-
tively the corresponding quadratic cost S in two steps, adapted
here to the GED (Alg. 1).

In the first step (line 2), the quadratic function S is linearly
approximated by its 1st-order expansion around the current so-
lution x: S (b) ≈ S (x) + (xT ∆ + cT )(b − x), with b≥ 0. Keeping
x fixed, the minimization of S (b) is approximatively equivalent
to the minimization of (xT ∆ + cT )b, which is a relaxed LSAP
(b≥ 0). As any solution to the relaxed LSAP is always a solu-
tion to the LSAP, i.e. a permutation, the next candidate solution
is thus computed by solving a LSAP (line 2). The resulting op-
timal assignment b∗ determines a direction of largest possible
decrease of S in the 1st-order approximation.

The second step (line 3 and line 4) consists in minimizing the
quadratic function S in the continuous domain along the direc-
tion given by b∗, which reduces to compute the extremum of S
on the segment joining x to b∗. This can be done analytically,
see Bougleux et al. (2015) for more details.

The iteration of these two steps converges to a local mini-
mum of the relaxed problem (Eq. 18), which can be continuous
or discrete. When the solution x is continuous (bi-stochastic),
it is projected to the closest permutation by solving the LSAP
argmin{xT b |b ∈ vec[An,m]}. The final assignment allows to re-
construct an edit path and to compute the associated approxi-
mated GED, which is thus suboptimal.

Two important remarks should be put forward concerning the
complexity of this algorithm. Concerning the LSAP solved in
the 1st step (line 2), xT ∆ can be computed in O((n + m)4) time
complexity. However, this complexity reduces to O((n + m)2)
if x is a permutation instead of being bi-stochastic. Using the
Hungarian algorithm to solve the LSAP, the time complexity of
step 2 is thus inO((n+m)3), like the computation of the bipartite
GED with the same algorithm. Concerning the second step, it
can be computed in O((n + m)2). Also, the cost matrix ∆ is
not stored but computed online using Eq. 13 and Eq. 14. The
memory complexity of the algorithm is thus reduced to O((n +

m)2) (the size of xT ∆ and cT ).
The efficiency of IPFP is closely related to the choice of

the initial solution, which also influences the number of iter-
ations required to reach the convergence. From a quadratic
optimization point of view, bipartite graph edit distances (Sec-
tion 3) approximate the quadratic problem by including infor-
mation about arcs into the cost matrix encoding edit operations
on nodes. Solutions provided by such methods, while not being
optimal according to the quadratic problem, should be close to
a low local minimum of the objective function S . Permutations
computed by such methods can thus be refined by IPFP algo-
rithm by using the full expression of the quadratic problem. The
choice of a particular bipartite graph edit distance algorithm is
discussed in Section 6.

5.2. GNCCP

Graduated NonConvexity and Concativity Procedure
(GNCCP) (Liu and Qiao, 2014; Zaslavskiy et al., 2009) is
a path following algorithm which aims at approximating the
solution of a QAP by considering a convex-concave relaxation
through the modified quadratic function:

S ζ(x) = (1 − |ζ |)S (x) + ζxT x (19)

where ζ ∈ [−1, 1]. When ζ = 1, S ζ(x) = xT x is fully convex, and
when ζ = − 1, S ζ(x) = −xT x is concave.

GNCCP algorithm (Alg. 2) starts with ζ = 1, and since the
minimization of xT x corresponds to a convex problem, the ini-
tialization step has no influence on the result of this first itera-
tion. So, unlike IPFP algorithm, no initial mapping is required.
This avoids accuracy variations induced by initialization, as ob-
served experimentally with IPFP (Section 6).

Then GNCCP algorithm smoothly interpolates convex and
concave relaxations by iteratively decreasing ζ from 1 to −1
with step size d (equal to 0.1 in all our experiments). Each iter-
ation, corresponding to a ζ, minimizes S ζ (Eq. 19). This is ini-
tially achieved by a Frank-Wolfe-like algorithm in (Leordeanu
et al., 2009). Here we use IPFP algorithm to perform this step.

GNCCP always converges to a permutation (Liu and Qiao,
2014). Convergence is reached when ζ = − 1, or before, when
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Algorithm 2 GNCCP(∆, kmax)
1: ζ = 1, d = 0.1, x = 0
2: while (ζ > −1) ∧ (x < An,m) do
3: ∆ζ ←

1
2 (1 − |ζ |)∆ + ζI

4: x← IPFP(x, (1 − |ζ |)c,∆ζ)
5: ζ ← ζ − d
6: end while

Table 1. Characteristics of the four GREYC’s chemistry datasets.
Dataset Number of graphs Avg Size Avg Degree
Alkane 150 8.9 1.8
Acyclic 183 8.2 1.8
MAO 68 18.4 2.1
PAH 94 20.7 2.4
MUT AG 8 × 10 40 2

x is a permutation. Note that the minimum of the concave re-
laxation is a permutation (Zaslavskiy et al., 2009). So here, no
projection step is required at the end of IPFP algorithm (see
previous section).

A closely related approach has been proposed by Zhou and
De la Torre (2012). However, it is based on a spectral decom-
position of the quadratic matrix ∆, which increases both the
execution time and the amount of memory required to store ∆

(∆ is not stored as described in Section 5.1).

6. Experiments

In this section, we evaluate the two suggested methods (Sec-
tion 5) based on IPFP and GNCCP algorithms through several
experiments. So, we compare our approach to an exact graph
edit distance method based on the A∗ algorithm, three meth-
ods based on LSAP, and one method based on quadratic pro-
gramming (Neuhaus and Bunke (2007b)). The exact GED is
used as a baseline to measure for each method its distances to
the optimum results. However, A∗ is restricted to small graphs
and we did not succeed to use it on all datasets due to its in-
tractable computational time. The three LSAP-based methods,
i.e. bipartite GEDs, are the ones proposed in Riesen and Bunke
(2009); Gaüzère et al. (2014); Carletti et al. (2015). As already
discussed, the definition of the costs encoding substitutions, re-
movals and insertions of nodes constitutes the main difference
between these methods.

Our experiments have been performed on four chemoinfor-
matics datasets1 plus one additional chemical dataset: MU-
TAG (Riesen and Bunke, 2008; Abu-Aisheh et al., 2015) (see
Table 1 for their characteristics). The variety of these datasets
allows to evaluate the different methods on four types of graphs:
acyclic labeled (Acyclic), acyclic unlabeled (Alkane), cyclic
labeled (MAO), cyclic unlabeled (PAH). In addition, in order
to check the performances of the compared methods on larger
graphs, we have performed several experiments on synthetic
graphs having the same characteristics as graphs in MAO but

1Available at https://iapr-tc15.greyc.fr/links.html

with a size extended up to 500 nodes (details below) and on
MUTAG dataset, which is divided into 7 different subsets com-
posed of graphs having from 10 to 70 nodes, plus one subset
composed of graphs having different sizes (Abu-Aisheh et al.,
2015).

Table 2 shows the results of our experiments on the four GR-
EYC’s datasets. Note that, in order to avoid any bias, all the
results have been computed using random permutations of ad-
jacency matrices before computing graph edit distances. For
each method and on each dataset we record the average edit
distance (d), the average approximation error (e) with respect
to the exact graph edit distance when available and the average
computational time (t) required to get the graph edit distance
for a pair of graphs. For all these measures, lower values cor-
respond to better results. Due to the computational complexity
required by A* algorithm, the exact graph edit distance has not
been computed on PAH and MAO datasets which are composed
of larger graphs than the ones in Acyclic and Alkane datasets.

IPFP approach allows to drastically improve the accuracy
of the approximation with respect to LSAP approaches while
keeping a reasonable computational time. This observation can
be made on the four datasets, hence showing the consistency of
this QAP approach. The results shown in Table 2 also highlight
the importance of the initialization step. Indeed, as stated in
Section 5, IPFP iteratively improves an initial solution. Hence,
a solution close to a low minima induces a low number of itera-
tions and a low value of the final solution. This phenomenon is
observed in Table 2 where the best results of IPFP methods are
obtained by using Gaüzère et al. (2014) which provides better
results than Riesen and Bunke (2009). Moreover, less itera-
tions are required to reach convergence since the algorithm is
initialized close to a minima. This phenomenon explains the
low differences of computational time between the different ap-
proaches. Note that we didn’t combine the LSAP method pre-
sented in Carletti et al. (2015) with IPFP due to its high com-
putational time. Compared to Neuhaus and Bunke (2007b),
the IPFP method obtains better or equivalent results in much
less times. Indeed, the ratio between the execution times of
Neuhaus and Bunke (2007b) and the ones of IPFP initialized
with Gaüzère et al. (2014) is greater than 63 on all datasets.
This last point may be explained by the use of the LSAP method
within IPFP method which provides a faster convergence than
classical interior point methods used by Neuhaus and Bunke
(2007b). The greater errors obtained by Neuhaus and Bunke
(2007b) are related to the fact that this method does not incor-
porate node insertion and deletion operations within the opti-
mization process. This last drawback has a large influence on
the accuracy especially when graphs have different sizes. Fi-
nally, the path following encoded by the GNCCP method ob-
tains significantly better results on three datasets over four with
execution times slightly lower than the method of Neuhaus and
Bunke (2007b). IPFP method initialized with Gaüzère et al.
(2014) obtains better results than GNCCP on MAO dataset. We
interpret this last point as follows: On this dataset and for sev-
eral couples of graphs, the LSAP method Gaüzère et al. (2014)
provides to IPFP an initialization close to a lowest minima than
the one found by GNCCP method, which is insensitive to the

https://iapr-tc15.greyc.fr/links.html
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Table 2. Accuracy and complexity scores. d is the average edit distance, e the average error and t the average computational time.

Algorithm
Alkane Acyclic MAO PAH

d e t d e t d t d t

A∗ 15 1.29 17 6.02
Riesen and Bunke (2009) 35 18 ' 10−3 35 18 ' 10−3 105 ' 10−3 138 ' 10−3

Gaüzère et al. (2014) 33 18 ' 10−3 31 14 ' 10−2 49 ' 10−2 120 ' 10−2

Carletti et al. (2015) 26 11 2.27 28 9 0.73 44 6.16 129 2.01
IPFPRandom init 22.6 7.1 0.007 23.4 6.1 0.006 65.2 0.031 63 0.04
IPFPInit Riesen and Bunke (2009) 22.4 7.0 0.007 22.6 5.3 0.006 59 0.031 62.2 0.04
IPFPInit Gaüzère et al. (2014) 20.5 5 0.006 20.7 3.4 0.005 33.6 0.016 52.5 0.037

Neuhaus and Bunke (2007b) 20.5 4.9 0.38 25.7 7.6 0.42 59.1 7 52.9 8.20
GNCCP 16.7 1.2 0.46 18.8 1.5 0.33 40.3 4.2 41.8 6.24

Table 3. Average edit distances obtained on MUTAG datasets.

Algorithm
csub < cdel + cins csub > cdel + cins

MUTAG 20 MUTAG 50 MUTAG mixed MUTAG 20 MUTAG 50 MUTAG mixed
IPFPInit Gaüzère et al. (2014) 40.68 109.66 195.71 26.57 53.87 78.10
Neuhaus and Bunke (2007b) 33.18 89.68 231.78 38.81 90.26 122.25
GNCCP 38.08 111.34 192.90 23.82 46.55 73.73

choice of a starting point.
In conclusion, these results show that the IPFP approach

combined with a relevant choice of the initial solution outper-
forms methods based on LSAP formulation and Neuhaus and
Bunke (2007b) while keeping an interesting computational time
with respect to the one required to compute an exact graph edit
distance. The path following approach provided by the GNCCP
method allows to further improve the results provided by the
IPFP method but at the cost of higher execution times since
GNCCP basically iterates the IPFP method.

These conclusions are confirmed by the results obtained on
MUTAG dataset. Experiments reported in Table 3 are obtained
on three MUTAG databases : graphs of size 20, 50 and mixed
graphs of various sizes. Neuhaus and Bunke (2007b) obtains
the best results on the first two columns. However, these results
are somehow biased by the fact that these two columns corre-
spond to graph edit distances computed between graphs having
a same size. Moreover, considering a substitution cost lower
than the sum of insertion and deletion costs also reduces the
need to consider node insertion and deletion operations. These
two last points explain the good results obtained by Neuhaus
and Bunke (2007b) on these columns. The remaining columns
confirm this hypothesis. When considering the mixed dataset,
Neuhaus method reaches a lower accuracy than the two other
methods which include insertion and deletion operations of
nodes within their optimization process. The second part of
Table 3 shows results on the same datasets but with a substitu-
tion cost greater than the sum of the costs of insertion and dele-
tion operations. This setting of costs increases the relevance of
node insertion and removal operations and as shown in Table 3
Neuhaus and Bunke (2007b) does not provide a good approxi-
mation in this case.

Figures 2(a) and 2(b) report execution times of three meth-
ods based on a QAP approach. Namely: IPFP initialized with
Gaüzère et al. (2014); Neuhaus and Bunke (2007b) and the

GNCCP (Liu and Qiao (2014)). These results have been com-
puted on a decomposition of the MUTAG dataset onto 7 subsets
composed of graphs of a same size from 10 to 70 nodes (Fig-
ure 2(a)) and on synthetic datasets composed of graphs from
10 to 100 nodes (Figure 2(b)). The construction of this syn-
thetic dataset is detailed in the next paragraph. As already ob-
served on Table 2, IPFP approach allows to keep a reasonable
computational time whereas Neuhaus and GNCCP methods re-
quire prohibitive execution times on large graphs. In particular
we had to stop the execution of Neuhaus and Bunke (2007b)
on graphs of size larger than 50 on MUTAG datasets due to
non reasonable execution times, i.e. more than 24 hours for a
single subset of 10 graphs. Figure 2(c) shows the behavior of
IPFP and LSAP methods when graphs become larger. To this
purpose, we computed approximate graph edit distances using
IPFP and LSAP approaches on graphs up to 500 nodes. Since
we are only interested in the computational times required by
IPFP and LSAP methods, we used the simple cost matrices de-
fined by Eq. 15. This cost matrix is similar to the one used
by Justice and Hero (2006). This last point explains the slight
difference in computational times observed between Figure 2(b)
and Figure 2(c). Neuhaus and Bunke (2007b) and GNCCP ap-
proaches have been excluded from this comparison since they
do not scale with graphs having more than 100 nodes. As we
can see in Figure 2(c), the execution times of our IPFP method
is about 900 seconds when applied on graphs of 500 nodes
while it remains equal to 0.1 seconds for LSAP.

Figure 3 reports the results obtained by 4 methods: two based
on LSAP : Riesen and Bunke (2009) and Gaüzère et al. (2014)
and two based on IPFP using the same couple of initializations.
In order to deeply analyze the behavior of these approaches,
we performed our experiments on increasing graph sizes (from
10 to 100 nodes) and different amount of distortions between
the pairs of graphs being compared. These results have been
computed on synthetic datasets having the same node and arc
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Fig. 2. Analysis of computationnal times on MUTAG and synthetic datasets
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Fig. 3. Log 10 of the ratios between the computed edit distances and an estimation of the optimal GED on synthetic graphs from 10 to 100 nodes.

labels distribution and the same ratio between the number of
arcs and the number of nodes as MAO dataset but generalized to
different graph sizes. For a given number of nodes, a synthetic
dataset is composed of 400 pairs of source and target graphs.
For each source graph we generate 4 target graphs by altering 5,
10, 25 and 50% of nodes’ source graph. Half the altered nodes
are removed and the other half are substituted. The overall edit
distance between source and target graphs is then estimated by
the costs associated to edit operations performed on nodes and
the ones induced on arcs. Note that this edit distance may not
be optimal.

Given this protocol, we generated 10 synthetic datasets com-
posed of 400 pairs of graphs, based on source graphs having
a same number of nodes. This last number ranges from 10 to
100 nodes. For each method and each pair of graphs, we define
the error as the ratio between the GED returned by the method
and the one computed from the set of distortions applied on the
source graph. Curves displayed in Fig. 3 show the log10 of these
ratios. A value equal to 1 indicates that the approximated GED
is ten times higher than the exact one, and a value equal to 0
indicates a perfect approximation.

Concerning LSAP methods we can note that Gaüzère et al.
(2014) work better than Riesen and Bunke (2009) for all per-
centages of distortion and all graph sizes. However, the gap
between the curves corresponding to both LSAP methods tends
to decrease as the percentage of distortions increases. We can
additionally note that the mean value of both curves decreases
as the distortion increases.

Concerning IPFP based methods, in all experiments reported
in Figure 3 these methods work better than the ones based on
LSAP. We can also note that the curve corresponding to IPFP
initialized with Gaüzère et al. (2014) remains approximately
constant for low distortions (5% and 10%) and increases ac-
cording to the size of graphs at higher distortion rates. Finally,
IPFP initialized with Gaüzère et al. (2014) obtains better results
than the one initialized with Riesen and Bunke (2009) for small
distortion rates, results obtained by both initialization becom-
ing similar for high distortion rates (25% and 50%). This last
point is coherent with the previous discussion on the decrease
of the gap between both LSAP methods at high distortion rates.
Computational times corresponding to these synthetic datasets
lead to the same observations made for MUTAG and GREYC’s
chemical datasets (Figure 2(c)).

7. Conclusion

In this paper, we have pointed out the relation between
constrained edit paths and the solutions of specific linear and
quadratic assignment problems. This characterization allows to
express the graph edit distance as a quadratic assignment prob-
lem with a clear definition of the family of edit paths implied
in the minimization process. This expression extends the lin-
ear approximation of the graph edit distance provided by the
bipartite graph edit distance. We have proposed to optimize
the quadratic problem by the IPFP and the GNCCP algorithms,
which provide two different and interesting ratio between time
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complexity and approximation quality. These algorithms can
be seen as a refinement of the bipartite graph edit distance.
Through experiments, we show that these algorithms find val-
ues close to the optimal solution with computational times still
affordable for graphs composed of 500 nodes.
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