Kernel-Based Implicit Regularization of Structured Objects
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Abstract—Weighted graph regularization provides a rich  regularity of the functionf should be defined according to a
framework that allows to regularize functions defined over he similarity criterion between objects. This property is aty
vertices of a weighted graph. Until now, such a framework achieved through the design of the associated kefael

has been only defined for real or multivalued functions herelg H forcina th larity of . feat
restricting the regularization framework to numerical data. owever, enforcing the regularity of a given feature nfap

On the other hand, several kernels have been defined so Of regularizingf according to a similarity measure different
far on structured objects such as strings or graphs. Using from its kernel, are not straightforward if one wants to keep

definite positive kernels, each original object is associat, by  the positive definiteness of the kernel. Note that given a
the “kemel trick’, to one element of a Hilbert space. As a g larized versiom: X — F of f, the kernelK? defined

consequence, this paper proposes to extend the weighted gha . . - . .
regularization framework to objects implicitly defined by their by K9(z,y) = (9(x),9(y)) is positive definite and provides

kernel hereby performing the regularization within the Hil bert a regularized version of the initial kernéf. .
space associated to the kernel. This work opens the door to Several approaches can be used to achieve such a regu-

the regularization of structured objects. larization. Among them, variational models based on energy
Keywords-kernel: graph-based regularization; total varia- minimization allow to find a functiory which is regular on
tion; classification; discrete structures X and remains close to the initial feature m#pSuch a
problem can be formalized as the solution of the following
|. INTRODUCTION optimization problem

Structured objects such as strings or graphs allow to . B B
encode objects made of several labels related by sequential ;:r;g{rgufl_ E(f.g,0)=aR(g) + (1 - a)Alg. f), (2)

or structural dependencies. Until recent years, the siityila where the functionalR(g) measures the regularity or

or the distance between two structured objects was mainly o w0 oo ofy, the functionalA(g, f) measures the ap-

computed from the two related notions of maximal Commonproximation error betweery and g, and the parameter
sub-graph and graph edit distance [1]. a € (0,1) measures the trade-off between these two terms.

However, such measures of distance (or similarity) OP-rhe determination of a functiogp minimizing an energy

leralie dlrter:: tly Itr'1 tlhe spa(t:_e otrhs_trulctukrefd bqgjefgs Wh'crrefined by a regularization term and an approximation one
acks matnematical properties. -1nis 1ack forbids e Use Ojg || known and closely related to the definition of a kérne

basic statistical tools such as mean or variance. Such (%ee e.g. [3], [4], [5]). However, in the specific case of

l'T'tat'cl).n. explalﬂs atbleZZF part:ally. :]he re;:entK popllltarl the regularization of mapping functions, we have to face
of explicit graph embedding algorithms [2]. Kernels on to two main problems: Firstly, the mapping functighto

structured objects provide an elegant alternative soiutio be regularized is usually only implicitly defined through it

this problem. By using a symmetric positive definite kemelassociated kerngk . Secondl . .

) . . y, even considering an explicit
KX x X' —Ron a sett, any object oft’ can be mappgd formulation of the mapping functiofi, its embedding space
to a Hilbert spacef (called feature space) by a function F may have an infinite dimension. These two drawbacks
f:&— F such that forbid usual regularization techniques (except approgsche

Ve, ye X, K(z,y)={(f(x),f(y)), (1) that rely on the graph Laplacian spectrum [6]).

where(-, -) represents the inner productf Many learning ~ Contributions and outline.

algorithms use only an inner product between input data For a finite setY’ of objects and a positive definite kernel

hereby avoiding the explicit computation of the feature mapK on X, we propose to compute explicitely a regularized

/. This computation scheme corresponds to the well-knowrkernel from the solution of the minimization problem (2)

“kernel trick”. See [3] or [4] for a survey on kernels and corresponding to the-TV-L, regularization on weighted

kernel methods. graphs (see e.g. [7], [8], [9]), adapted here to feature maps
An ideal fonctionf should map two close objectsand  (Section Il). This is similar to the regularization of muilti

y of X onto two close pointg(x) and f(y) of . Thus, the valued functions defined o’. Then, we show that the



regularization equations derived from the solution of (2)(isotropic) total variation ofy and (2) corresponds to the
allow to compute the regularized kernel without explicitly 7'V-L2 regularization.

computing the regularized feature map (Section 1ll). The As for p>1, E(f,g,«) is a strickly convex functional,
validation of the proposed kernel regularization is predd one can find a solution of the minimization 8% f, g, a) by

in Section IV using graph kernels measuring the similaritycomputing its critical points in the direction of any elerhen

between shape’s skeleton. u € F, e.g. functiong; satisfying
Il. DISCRETE REGULARIZATION OF FEATURE MAPS (Og() E(f,9,),u) =0, Yr € X. (6)
Given a finite setY, recent works on discrete regular- It is easy to show that for alt € X
ization ([7], [8], [9]) consider the elements Gt as the
vertices of a weighted graph, that can be fully represenyed b Oy (a Z Yoy (g _ 9(y) u
a weight matrixW = (w,y)s yex. The symmetric positive ot dydy @)
weight functionw: X x X — R, measures the similarity = ((Apg) (@), u)
=((A, ,

between two elements &f such that:, y € X’ are connected
by an edgdz, y) in the graph ifw,, > 0, and not connected Wherev,,(g) = sw., (IV¥g[P~2 + |[Vyg[P=2), andA,g is
if w,, =0. Also, the graph is supposed to have no self-loopsthe gradient-baseg-Laplacian ofg over W. Then from (6)
that isw,, =0 for all z € X. and (7) we obtain for alk € X andu e F
Then, the minimization of(f, g, a) (see (2)) is defined o
for functions f,g: X — R? with a least square functional ol(Apg)(z)w) + (1 = a){g(x) = fz),u) = 0. (8)
as an approximation term(g, f), and a total variation-like By the positive-definiteness property of the kerel), if
regularization termR(g). the functiong is a minimizer of E(f, g, «) for any direction
Rewritten in the context of feature magsg: X —F, weF, we have for allz € X

the approximation termd (g, f) corresponds to the quadratic
e (9, f) corresp | o(B,9)(@) + (1= a)(g(@) — f@) =0. (@)

functional given by
This latter system of nonlinear equations, expressed here
Z 1f(x) — g(=)|1?, (3)  for mapping functions from¥ to F, can be approximated
zeX by several methods such as the nonlinear Jacobi method or
the steepest descent one (see for instance [7],[8] or [@], an
Section Ill). In this paper, we consider the nonlinear Jacob
method given by the following iterative algorithm

where|| - || =+/(-, -) corresponds to the inner product in the
feature spacer. Similarly, the regularization terni(g) is
the (isotropic)p-total variation ofg over the graph given by

g =1
=5 2 VEal p21 @ {gm(x) @0+ Lhygw), vacx (10
y~T

where V¥¢g represents the pointwise graph-gradientgof

defined by the vector operator whereg! is the mapping functiow at the timet, and

l1—«

L, =
9y) y(@) A D ‘
VIGX, Vgg: /Wy — s @ dy ZZNJE Vaz
( ' (vdy V. o’ a
;’lj = Y ? V'r # y
whered, = >° _, way is the degree af, andz ~y denotes T /dedy (1 —a+ &3 ’Yiz)

the set of elementge X connected tac. o ) o
Its magnitude is usually given by i, norm overFI¥| When the initial mapping functiofi is unknown, or wheifF
is infinite-dimensional, the regularized versigof f cannot

2\ 2 be computed explicitely with (10), or with any other method
|V@g| = Zwmy M _ () , YzeX solving (6). Nevertheless, (10) can be used to compute a
y~z d (5) regularized kerneK? of K.
7 I11. KERNEL REGULARIZATION
— (S, 9@) 9@ 9y) 9(@) _ he i e ) o det
=~ Vi, V& \Jd, Vi, e minimizerg of problem (2) can be used to define

a regularized kerneKy, = (g(z),g(y)), Y(v,y) € X x X,
Whenp =2, it can be shown thaR(g) = (Lg, g), where  which can be seen as a regularized version of the initial
L denotes the normalized graph Laplacian, which is usuallkernel K defined by (1). By using the iterative algo-
considered as a kernel dn [5]. In this case, (2) corresponds rithm (10) to computey, at convergence the inner product
to the Tikhonov regularization. Whep=1, R(g) is the  (¢'"'(z),¢'*'(y)) tends to KY,. By recursion on both



g'*t1(z) and g**1(y), we show that this allows to compute Remark.We can derive an equivalent scheme considering
the regularized kernel without computing explicitely the the steepest descent method for solving (9), that is

mapping functiory.
To do this, letS, = (f(z),g'(y)) = (¢' (). f(z)) be the

similarity between the initial functiorf and the regularized

one at step. By applying (10) mSi;jl, we obtain for all
(z,y) eX x X

)+ > LS (2)),

z~Yy

=L}, K.y + > LS.

z~Yy

St+1 10)Lt
(12)

Similarly, we have for all(z,y) € X x X

K8, = (g (), gt“(y)>
L @), g T ) + Y L

T

LL,SEY+ L N L (g'(2), f(v))
+YLLY L (9'(2), 9" (v),
zZ~T v~y

=Lt St S rtsl + > Ly L KY,

zx™ Ty
zZ~xT zZ~T vy
(13)

which depends on the initial kerngk, the regularized
kernel K9° at the step, the similaritiesSt and St*!, and
L? defined by (11). One can observe that depends on
the gradient magnitude (5) aff, which can be explicitly
computed for allz € X from K9' by

K9 K9 2K
|vwgt| _ <Z Way < Tz ﬂ _ yx ))
o dy dy Vdzdy

By recursion, this shows that the kerder' "
on the initial kernelK.

The proposed computation of the regularized kerkiél
is summarized by the following algorithm

g ), 9" (W)

(10)

=

. (14)

' only depends

(a) K90<—K, SO — K, t—0
) |Vaeg!| «— (14), VzxeX
) LL, — (11), VY(z,y)e X x X
(d) SH'—(12), V(z,y)e X x X
(e) Kjg;+1 —(13), V(z,y) e X x X
if not converged ¢t — ¢t + 1 and goto(b).

(15)

dgdix) = —a(Ap9)(@) - (1 - a)(g(x) - f()), Vo € X,

with ¢° = f as initial value. By using the Euler method
9" (2) =¢'(2) — Ta(Apg") (2),
—7(1—a)(¢"(z) — f(2)), Vo € X
wherer > 0 is the marching step size, the kernel associated

to the regularized version of the mapping functipican be
computed by the following equation

K9 =THH 4 7(1 — a)(StH!

Tt t+1
_TOCE Yoz | —5—
Cl)

T

-1

thg,f-ﬁ-l
dyd, |’

where StF = (f(x), 9" (y)) is given by
S;Zl :St +7(1— ) (Kgy —S;y)
t St
zy xrz
_TQ;J%JZ <__ d/ydz )

and T+ = (¢'(z), 9" (y)) is given by

tt+l _ 7-gt t g*
ngy+ =KJ,+7(1 - a)(S;, —Kgy)

K9,
— T ’72 .
i ()

IV. APPLICATION TO SHAPE CLASSIFICATION

The proposed kernel regularization framework is validated
in the context of shape classification. Given a gétof
2D shapes, each shape can be described by its skeleton,
represented by a graph which encodes the main shocks along
the skeleton [10]. Each pair of shapes is then compared using
the graph kernel proposed by [10]: each graph is associated
to a bag of trails which covers it and contains the most
important information about the shape. The bag of trails
associated to the two graphs are then compared using a
convolution kernel which weights each trail according to it
relevance within its bag. The resulting kerrf€lis positive
definite within the space of graphs.

To classify the shapes &, a training setY’ C X is se-
lected and structured by a weighted graph= (wzy )z, yecx-
An intuitive weight function between two shapesand y
is given by the graph edit distance [11], which compares
the graph representation afandy. Unfortunatly, defining
a positive definite kernel from this distance is not straight

The relative error on the regularized kernel can be used agrward, for instance the Gaussian kernel based on this edit

a stopping criterion in step (e)

t

t4+1 2
ZzGX ZyeX(K'gy B Kﬂgy) < 2
D vex 2yex (Kiy)? B

wheree = 1e~8 in our experiments provided in the following

section.

distance is not definite positive.
In this paper, we choose to correct the metric provided by

[10] by regularizing the initial graph kernél” with (15) on

the graphiV with weights defined by

—d?(Gy, Gy))

(16)

Wyy = ETP ( 902
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investigates other regularization approaches, such as the
one based on unnormalizedLaplacians. We also plan to
provide a deep study of the different parameters involved in
these regularization schemes.
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