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Abstract—Weighted graph regularization provides a rich
framework that allows to regularize functions defined over the
vertices of a weighted graph. Until now, such a framework
has been only defined for real or multivalued functions hereby
restricting the regularization framework to numerical dat a.
On the other hand, several kernels have been defined so
far on structured objects such as strings or graphs. Using
definite positive kernels, each original object is associated, by
the “kernel trick”, to one element of a Hilbert space. As a
consequence, this paper proposes to extend the weighted graph
regularization framework to objects implicitly defined by t heir
kernel hereby performing the regularization within the Hil bert
space associated to the kernel. This work opens the door to
the regularization of structured objects.
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I. I NTRODUCTION

Structured objects such as strings or graphs allow to
encode objects made of several labels related by sequential
or structural dependencies. Until recent years, the similarity
or the distance between two structured objects was mainly
computed from the two related notions of maximal common
sub-graph and graph edit distance [1].

However, such measures of distance (or similarity) op-
erate directly in the space of structured objects which
lacks mathematical properties. This lack forbids the use of
basic statistical tools such as mean or variance. Such a
limitation explains at least partially the recent popularity
of explicit graph embedding algorithms [2]. Kernels on
structured objects provide an elegant alternative solution to
this problem. By using a symmetric positive definite kernel
K :X ×X →R on a setX , any object ofX can be mapped
to a Hilbert spaceF (called feature space) by a function
f :X →F such that

∀x, y ∈X , K(x, y)= 〈f(x), f(y)〉, (1)

where〈·, ·〉 represents the inner product inF . Many learning
algorithms use only an inner product between input data
hereby avoiding the explicit computation of the feature map
f . This computation scheme corresponds to the well-known
“kernel trick”. See [3] or [4] for a survey on kernels and
kernel methods.

An ideal fonctionf should map two close objectsx and
y of X onto two close pointsf(x) andf(y) of F . Thus, the

regularity of the functionf should be defined according to a
similarity criterion between objects. This property is usually
achieved through the design of the associated kernelK.
However, enforcing the regularity of a given feature mapf ,
or regularizingf according to a similarity measure different
from its kernel, are not straightforward if one wants to keep
the positive definiteness of the kernel. Note that given a
regularized versiong :X →F of f , the kernelKg defined
by Kg(x, y)= 〈g(x), g(y)〉 is positive definite and provides
a regularized version of the initial kernelK.

Several approaches can be used to achieve such a regu-
larization. Among them, variational models based on energy
minimization allow to find a functiong which is regular on
X and remains close to the initial feature mapf . Such a
problem can be formalized as the solution of the following
optimization problem

argmin
g :X →F

E(f, g, α)= αR(g) + (1−α)A(g, f), (2)

where the functionalR(g) measures the regularity or
smoothness ofg, the functionalA(g, f) measures the ap-
proximation error betweenf and g, and the parameter
α∈ (0, 1) measures the trade-off between these two terms.
The determination of a functiong minimizing an energy
defined by a regularization term and an approximation one
is well-known and closely related to the definition of a kernel
(see e.g. [3], [4], [5]). However, in the specific case of
the regularization of mapping functions, we have to face
to two main problems: Firstly, the mapping functionf to
be regularized is usually only implicitly defined through its
associated kernelK. Secondly, even considering an explicit
formulation of the mapping functionf , its embedding space
F may have an infinite dimension. These two drawbacks
forbid usual regularization techniques (except approaches
that rely on the graph Laplacian spectrum [6]).

Contributions and outline.

For a finite setX of objects and a positive definite kernel
K on X , we propose to compute explicitely a regularized
kernel from the solution of the minimization problem (2)
corresponding to thep-TV -L2 regularization on weighted
graphs (see e.g. [7], [8], [9]), adapted here to feature maps
(Section II). This is similar to the regularization of multi-
valued functions defined onX . Then, we show that the



regularization equations derived from the solution of (2)
allow to compute the regularized kernel without explicitly
computing the regularized feature map (Section III). The
validation of the proposed kernel regularization is provided
in Section IV using graph kernels measuring the similarity
between shape’s skeleton.

II. D ISCRETE REGULARIZATION OF FEATURE MAPS

Given a finite setX , recent works on discrete regular-
ization ([7], [8], [9]) consider the elements ofX as the
vertices of a weighted graph, that can be fully represented by
a weight matrixW = (wxy)x,y∈X . The symmetric positive
weight function w :X ×X →R+ measures the similarity
between two elements ofX such thatx, y ∈X are connected
by an edge(x, y) in the graph ifwxy > 0, and not connected
if wxy =0. Also, the graph is supposed to have no self-loops,
that iswxx =0 for all x∈X .

Then, the minimization ofE(f, g, α) (see (2)) is defined
for functions f, g :X →R

q with a least square functional
as an approximation termA(g, f), and a total variation-like
regularization termR(g).

Rewritten in the context of feature mapsf, g :X →F ,
the approximation termA(g, f) corresponds to the quadratic
functional given by

A(g, f) =
1

2

∑

x∈X

‖f(x)− g(x)‖2, (3)

where‖ · ‖=
√

〈·, ·〉 corresponds to the inner product in the
feature spaceF . Similarly, the regularization termR(g) is
the (isotropic)p-total variation ofg over the graph given by

R(g) =
1

2p

∑

x∈X

|∇w
x g|p, p≥ 1, (4)

where∇w
x g represents the pointwise graph-gradient ofg

defined by the vector operator

∀x∈X , ∇w
x g =

(

√
wxy

(

g(y)
√

dy

− g(x)√
dx

))

y∈X

,

wheredx =
∑

y∼x wxy is the degree ofx, andx∼ y denotes
the set of elementsy ∈X connected tox.

Its magnitude is usually given by itsL2 norm overF |X |

|∇w
x g| =
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1
2

.

(5)

Whenp =2, it can be shown thatR(g)= 〈Lg, g〉, where
L denotes the normalized graph Laplacian, which is usually
considered as a kernel onX [5]. In this case, (2) corresponds
to the Tikhonov regularization. Whenp =1, R(g) is the

(isotropic) total variation ofg and (2) corresponds to the
TV -L2 regularization.

As for p≥ 1, E(f, g, α) is a strickly convex functional,
one can find a solution of the minimization ofE(f, g, α) by
computing its critical points in the direction of any element
u∈F , e.g. functionsg satisfying

〈∂g(x)E(f, g, α), u〉= 0, ∀x∈X . (6)

It is easy to show that for allx∈X

〈∂g(x)R(g), u〉 =
∑

y∼x

γxy(g)

〈

g(x)

dx

− g(y)
√

dxdy

, u

〉

= 〈(∆pg)(x), u〉,
(7)

whereγxy(g)= 1
2wxy

(

|∇w
x g|p−2 + |∇w

y g|p−2
)

, and∆pg is
the gradient-basedp-Laplacian ofg overW . Then from (6)
and (7) we obtain for allx∈X andu∈F

α〈(∆pg)(x), u〉+ (1−α)〈g(x)− f(x), u〉 = 0. (8)

By the positive-definiteness property of the kernel〈·, ·〉, if
the functiong is a minimizer ofE(f, g, α) for any direction
u∈F , we have for allx∈X

α(∆pg)(x) + (1−α)(g(x)− f(x)) = 0. (9)

This latter system of nonlinear equations, expressed here
for mapping functions fromX to F , can be approximated
by several methods such as the nonlinear Jacobi method or
the steepest descent one (see for instance [7],[8] or [9], and
Section III). In this paper, we consider the nonlinear Jacobi
method given by the following iterative algorithm






g0 = f

gt+1(x) = Lt
xxf(x) +

∑

y∼x

Lt
xyg

t(y), ∀x∈X (10)

wheregt is the mapping functiong at the timet, and

Lt
xx =

1− α

1− α + α
dx

∑

z∼x γt
xz

Lt
xy =

αγt
xy

√

dxdy

(

1− α + α
dx

∑

z∼x γt
xz

) , ∀x 6= y.
(11)

When the initial mapping functionf is unknown, or whenF
is infinite-dimensional, the regularized versiong of f cannot
be computed explicitely with (10), or with any other method
solving (6). Nevertheless, (10) can be used to compute a
regularized kernelKg of K.

III. K ERNEL REGULARIZATION

The minimizerg of problem (2) can be used to define
a regularized kernelKg

xy = 〈g(x), g(y)〉, ∀(x, y)∈X ×X ,
which can be seen as a regularized version of the initial
kernel K defined by (1). By using the iterative algo-
rithm (10) to computeg, at convergence the inner product
〈gt+1(x), gt+1(y)〉 tends to Kg

xy. By recursion on both



gt+1(x) andgt+1(y), we show that this allows to compute
the regularized kernel without computing explicitely the
mapping functiong.

To do this, letSt
xy = 〈f(x), gt(y)〉= 〈gt(y), f(x)〉 be the

similarity between the initial functionf and the regularized
one at stept. By applying (10) inSt+1

xy , we obtain for all
(x, y)∈X ×X

St+1
xy

(10)
= Lt

yy〈f(x), f(y)〉+
∑

z∼y

Lt
yz〈f(x), gt(z)〉,

=Lt
yyKxy +

∑

z∼y

Lt
yzS

t
xz.

(12)

Similarly, we have for all(x, y)∈X ×X

Kgt+1

xy = 〈gt+1(x), gt+1(y)〉
(10)
= Lt

xx〈f(x), gt+1(y)〉+
∑
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xz〈gt(z), gt+1(y)〉

(10)
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xxSt+1
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∑
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Lt
xz〈gt(z), f(y)〉

+
∑

z∼x

Lt
xz

∑
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Lt
yv〈gt(z), gt(v)〉,

= Lt
xxSt+1

xy + Lt
yy

∑

z∼x

Lt
xzS

t
yz +

∑

z∼x

Lt
xz

∑

v∼y

Lt
yvK

gt

zv

(13)
which depends on the initial kernelK, the regularized
kernelKgt

at the stept, the similaritiesSt andSt+1, and
Lt defined by (11). One can observe thatLt depends on
the gradient magnitude (5) ofgt, which can be explicitly
computed for allx∈X from Kgt

by

|∇w
x gt| =

(

∑

y∼x

wxy

(

Kgt

xx

dx

+
Kgt

yy

dy

−
2Kgt

yx
√

dxdy

))
1
2

. (14)

By recursion, this shows that the kernelKgt+1

only depends
on the initial kernelK.

The proposed computation of the regularized kernelKg

is summarized by the following algorithm










































(a) Kg0 ← K, S0 ← K, t← 0

(b) |∇xgt| ← (14), ∀x∈X
(c) Lt

xy ← (11), ∀(x, y)∈X ×X
(d) St+1

xy ← (12), ∀(x, y)∈X ×X
(e) Kgt+1

xy ← (13), ∀(x, y)∈X ×X
(f) if not converged, t← t + 1 and goto(b).

(15)

The relative error on the regularized kernel can be used as
a stopping criterion in step (e)

∑

x∈X

∑

y∈X (Kgt+1

xy −Kgt

xy)
2

∑

x∈X

∑

y∈X (Kgt

xy)2
≤ ǫ2,

whereǫ =1e−8 in our experiments provided in the following
section.

Remark.We can derive an equivalent scheme considering
the steepest descent method for solving (9), that is

dgt(x)

dt
= −α(∆pg)(x)− (1− α)(g(x) − f(x)), ∀x ∈ X ,

with g0 = f as initial value. By using the Euler method

gt+1(x) =gt(x)− τα(∆pgt)(x),

− τ(1 − α)(gt(x) − f(x)), ∀x ∈ X
whereτ > 0 is the marching step size, the kernel associated
to the regularized version of the mapping functionf can be
computed by the following equation

Kgt+1

xy =T t,t+1
xy + τ(1 − α)(St+1

xy − T t,t+1
xy )

− τα
∑

z∼x

γxz

(

T t,t+1
xy

dx

−
T t,t+1

zy√
dxdz

)

,

whereSt+1
xy = 〈f(x), gt+1(y)〉 is given by

St+1
xy = St

xy + τ(1−α)(Kxy−St
xy)

− τα
∑

z∼y

γyz

(

St
xy

dy

− St
xz

√

dydz

)

,

andT t,t+1
xy = 〈gt(x), gt+1(y)〉 is given by

T t,t+1
xy =Kgt

xy + τ(1 − α)(St
xy −Kgt

xy)

− τα
∑

z∼y

γt
yz

(

Kgt

xy

dy

− Kgt

xz
√

dydz

)

.

IV. A PPLICATION TO SHAPE CLASSIFICATION

The proposed kernel regularization framework is validated
in the context of shape classification. Given a setX of
2D shapes, each shape can be described by its skeleton,
represented by a graph which encodes the main shocks along
the skeleton [10]. Each pair of shapes is then compared using
the graph kernel proposed by [10]: each graph is associated
to a bag of trails which covers it and contains the most
important information about the shape. The bag of trails
associated to the two graphs are then compared using a
convolution kernel which weights each trail according to its
relevance within its bag. The resulting kernelK is positive
definite within the space of graphs.

To classify the shapes inX , a training setX ′⊂X is se-
lected and structured by a weighted graphW =(wxy)x,y∈X ′.
An intuitive weight function between two shapesx and y

is given by the graph edit distance [11], which compares
the graph representation ofx andy. Unfortunatly, defining
a positive definite kernel from this distance is not straight-
forward, for instance the Gaussian kernel based on this edit
distance is not definite positive.

In this paper, we choose to correct the metric provided by
[10] by regularizing the initial graph kernelK with (15) on
the graphW with weights defined by

wxy = exp

(−d2(Gx, Gy)

2σ2

)

, (16)



Table I
CONFUSION MATRIX WITH REGULARIZATION











10 0 0 0 0 0 0 0 1

0 11 0 0 0 0 0 0 0

0 0 9 0 0 2 0 0 0

0 0 0 10 0 0 0 0 1

0 0 0 0 8 0 0 0 3

0 0 0 0 0 9 2 0 0

0 0 0 0 0 0 11 0 0

0 1 0 0 0 1 0 9 0

0 0 1 0 0 0 0 0 10











Table II
CONFUSION MATRIX WITHOUT REGULARIZATION











10 0 0 0 0 0 0 0 1

0 10 0 0 0 0 0 1 0

0 0 9 0 0 2 0 0 0

0 0 0 10 0 0 1 0 0

0 0 1 0 9 0 0 1 0

0 0 0 0 0 9 2 0 0

0 0 0 0 0 0 11 0 0

0 0 0 0 0 1 0 10 0

0 0 3 0 0 0 0 0 8











where Gx and Gy describe the graphs associated to the
shapesx, y ∈X ′, and d is the edit distance. The resulting
kernelKg is definite positive (Section 3) and is associated
to a regularized mapping function according to the weight
matrix W . Roughly speaking this kernel thus maps two
graphs with a small edit distance to two close points in the
feature space. This process can be seen as an alternative to
[12], which defines a non positive definite kernel from edit
distances.

This regularization scheme has been tested on 99 shapes
of the well-known Kimia database, which is composed of 9
classes of 11 shapes. The training set was composed of 5
shapes of each class. The parameters of the kernelK [10]
were optimized on this set using a5-fold cross-validation
combined with a grid-search.

The classification is performed from the regularized kernel
using the quadratic discriminant analysis proposed by [13].
Table 1 and Table 2 show the confusion matrices obtained
from the classification respectivley based the regularizedand
non-regularized Gram matrices defined by the kernelK on
our trianing set. The regularization parameters used for these
experiments arep =1 and α =0.8. This experiments show
improvements for the last class (8 to 10 shapes correctly
classified), and the second one. This improvements are
partially counter-balanced by small loss on classes 5 and
8, where one additional shape is missclassified in each case.
The overall classification rate is improved from0.868 to
0.878. This low improvement may be explained by the
already good results obtained by [12], without the proposed
regularization, and by the small size of the training set.

V. CONCLUSION

This paper describes a new regularization framework
for mapping functions implicitely defined by positive def-
inite kernels. This applies both on numerical and symbolic
data such strings or graphs. The regularization steps allow
to combine different metrics while preserving the postive
definiteness of the initial kernel. Our current work [14]

investigates other regularization approaches, such as the
one based on unnormalizedp-Laplacians. We also plan to
provide a deep study of the different parameters involved in
these regularization schemes.
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