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Abstract. This paper shows how Voronoi diagrams and their dual De-
launay complexes, defined with geodesic distances over 2D Reimannian
manifolds, can be used to solve two important problems encountered
in computer vision and graphics. The first problem studied is perceptual
grouping which is a curve reconstruction problem where one should com-
plete in a meaningful way a sparse set of noisy curves. From this latter
curves, our grouping algorithm first designs an anisotropic tensor field
that corresponds to a Reimannian metric. Then, according to this met-
ric, the Delaunay graph is constructed and pruned in order to correctly
link together salient features. The second problem studied is planar do-
main meshing, where one should build a good quality triangulation of
a given domain. Our meshing algorithm is a geodesic Delaunay refine-
ment method that exploits an anisotropic tensor field in order to locally
impose the orientation and aspect ratio of the created triangles.

1 Introduction and Related Concepts

Various important problems in computer vision and computer graphics re-
quire the integration of a local anisotropy over a complicated planar domain.
This local anisotropy is dictated by directional features such as curves or tex-
tures that should be exploited to perform sampling, segmentation, grouping or
meshing tasks. In this paper, we focus on two representative problems in these
fields: perceptual grouping of salient features and meshing of planar domains.

The proposed approach encodes the local anisotropy within a tensor field
that corresponds to a Riemannian metric. This local information is integrated
into global constraints thanks to the geodesic distance over this Riemannian
domain. Based on this geodesic distance, one can define the Riemannian Voronoi
diagram of a point set [1] and its dual Delaunay complex to perform grouping and
meshing tasks. Such geometrical structures are not easy to compute, and several
approximate solutions have been proposed (see for instance [2], [3]). Here, we
adopt an approach based on the Fast Marching algorithm to compute geodesic
distances and Voronoi diagrams.

This section reviews basis facts about Riemannian manifolds and explains
how geodesic distances can be computed efficiently with Fast Marching methods.
? This work was partially supported by ANR Grant SURF-NT05-2 45825.
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Fig. 1. Examples of Riemannian metrics (top row) and geodesic distances and curves
(bottom row). The colormap indicates the geodesic distance to the starting point. From
left to right: Euclidean (H(x) = Id2) in R2 and then restricted to a planar domain,
isotropic (H(x) = W (x)Id2 with W computed from the image), Riemannian manifold
(H(x) is the structure tensor of the image, see (8)) and 3D surface (H(x) corresponds
to the first fundamental form).

Riemannian metric, geodesic distances and shortest paths. This paper
considers 2D Riemannian manifolds that are defined over a compact planar do-
main Ω ⊂ R2. The boundary ∂Ω of Ω is assumed to be a set of closed smooth
curves. At each point x ∈ Ω, one has a tensor H(x) ∈ R2×2 which is a positive
symmetric matrix. This tensor field defines a local metric that allows to measure
the length of a piecewise smooth curve γ : [0, 1] → Ω as follows

L(γ) def.=
∫ 1

0

√
γ′(t)TH(γ(t))γ′(t)dt.

In image processing and computer vision, the manifold is often the image domain
Ω = [0, 1]2 equipped with a metric H derived from the image to process. In com-
puter graphics and numerical analysis, one often deals with complicated planar
domains with holes and corners. Figure 1 shows several Riemannian metrics. An
important issue is thus to design, for a specific application, a tensor field H that
encodes the important information about the problem to solve.

At each location x ∈ Ω, the Riemannian tensor can be diagonalized as

H(x) = λ1(x)e1(x)e1(x)
T + λ2(x)e2(x)e2(x)

T
, (1)

where λ1 > λ2 > 0 are the eigenvalue fields, and e1, e2 are the corresponding
orthogonal (un-oriented) eigenvector fields. A curve γ passing at location γ(t) =
x with speed γ′(t) has a shorter local length if γ′(t) is collinear to e1(x) rather
than to another direction. Hence shortest paths tend to be tangent to the field e1.

The anisotropy of a metric H(x) is defined as

α(x) def.=
λ1 − λ2

λ1 + λ2
=

√
(a− b)2 + 4c2

a+ b
∈ [0, 1], for H(x) =

(
a c
c b

)
. (2)
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Fig. 2. Distance maps and geodesics for a tensor field with a decreasing anisotropy α.
The tensor field is computed from the structure tensor of f as defined in (8).

A metric with α(x) close to 1 is highly directional near x, whereas a metric with
α(x) close to 0 is locally isotropic near x.

The geodesic distance between two points of Ω is defined as

d(x, y) def.= min
γ∈P(x,y)

L(γ), ∀ (x, y) ∈ Ω2, (3)

where P(x, y) def.= {γ \ γ(0)=x ∧ γ(1)=y} denotes the set of piecewise smooth
curves joining x and y. The distance d turns the domain Ω into a metric space.

A shortest path γ between two points (x, y) ∈ Ω2, according to the Rieman-
nian metric, is called a geodesic. It satisfies L(γ) = d(x, y).
Distance map. In order to perform the numerical computation of geodesic
curves and distances, we fix a set of starting points S = (xk)k ⊂ Ω and we
define the distance map to this set

US(x) def.= min
k

d(x, xk), ∀x ∈ Ω.

An important theoretical result is that if x 7→H(x) is continuous, US is the
unique viscosity solution of the following Hamilton-Jacobi non-linear partial dif-
ferential equation (PDE)

‖∇xUS‖H(x)−1 = 1, with US(xk) = 0, ∀k, (4)

where ‖v‖A =
√
vTAv. This classical result (see for instance [4]) allows to replace

the optimization problem (3) that defines geodesic distances by a PDE.
Once the distance map US has been computed by solving (4), one can extract

a geodesic γ between a point x and its closest point xk ∈ S by the following
gradient descent

γ′(t) = −
H(γ(t))−1∇γ(t)US

‖H(γ(t))−1∇γ(t)US‖
, with γ(0) = x. (5)

The geodesic curve γ extracted using this gradient descent is parametrized with
unit speed since ‖γ′‖=1. In particular, if S = {x1} is restricted to one point,
then one can compute the geodesic curve between x1 and any point in Ω.



Fig. 3. Anisotropic front propagation from 9 starting points. The colormap indicates
the values of the distance map at a given iteration of the FM algorithm. The metric is
computed using the structure tensor (see (8)), of the background image.

Figure 2 shows examples of geodesic curves computed from a single starting
point S = {x1} located at the center of the domain Ω= [0, 1]2, and a set of points
on the boundary of Ω. The geodesics are computed for a metric H, derived from
the image f :Ω→R, and whose anisotropy α (defined in (2)) is decreasing, thus
making the Riemannian space progressively closer to the Euclidean space.

For the particular case of an isotropic metric H(x)=W (x)Idx, the geodesic
distance and the shortest path satisfy

‖∇xUS‖ = W (x) and γ′(t) = − ∇xUS
‖∇xUS‖

. (6)

This corresponds to the Eikonal equation, that has been used to compute mini-
mal paths weighted by W [5].
Numerical computations of geodesic distances. In order to make all the
previous definitions effective in practical situations, one needs a fast algorithm
to compute the geodesic distance map US . The Fast Marching (FM) algo-
rithm, introduced by Sethian [6], is a numerical procedure to efficiently solve
in O(n log(n)) operations the discretization of (6) in the isotropic case. Several
extensions of the FM algorithm have been proposed in order to solve (4) for a
generic metric, see for instance Kimmel and Sethian [7] for triangulated meshes
and Spira and Kimel [8], Bronstein et al. [9] for parametric manifolds.

In our numerical experimentations, we use the O(n log(n)) FM algorithm
developed by Prados et al. [10]. As any FM method, it computes the distance
map US by progressively propagating a front, starting from the points in S.
Figure 3 shows an example of FM computation with an anisotropic metric. The
front propagates faster along the direction of the texture. This is due to the
alignment of the principal direction field e1 (of the metric) with the textures.

2 Riemannian Voronoi Diagrams and Dual Complexes

This section shows how several concepts from computational geometry can
be extended to the setting of Riemannian metrics. Given a 2D Riemannian
manifold as defined in Section 1, and a set of points S = {xi}m

i=1⊂Ω, one can
define combinatorial and geometrical structures that organize the domain Ω and
the set S with respect to the geometry of the manifold.



Voronoi diagrams. Riemannian Voronoi diagrams [1] considered in this paper
have the same definition as the Euclidean Voronoi diagram and its extensions.
Given a metric and a set of points S, the partition VS of the domain Ω in Voronoi
cells Ci is given by

VS
def.=

⋃
xi∈S

Ci = Ω with Ci
def.= {x ∈ Ω \ ∀ j 6= i, d(xi, x) 6 d(xj , x)} . (7)

Using the anisotropic geodesic distance (3) for d, VS is a Riemannian Voronoi di-
agram of the set S, restricted to the domain Ω. This anisotropic geodesic Voronoi
diagram shares several properties with the Euclidean Voronoi diagram. In par-
ticular, anisotropic geodesic Voronoi cells have the advantage to be connected.
This is not necessarily the case for the so-called anisotropic Voronoi diagram [3],
defined with a simplified anisotropic distance d̃(x, y) = ((x− y)TH(x)(x−y))1/2

that is not based on shortest paths.
Two Voronoi cells Ci and Cj are adjacent if Ci ∩Cj 6= ∅. This intersection

defines a Voronoi edge that is the set of points of Ω located at equal distance
from the points xi and xj of S. With the anisotropic geodesic distance (3), such
an edge is an open or closed curve. A Voronoi vertex is the intersection point
of at least three adjacent Voronoi cells. When the set S is in general position, a
Voronoi vertex is the intersection point of exactly three Voronoi cells

Vi,j,k
def.= Ci ∩ Cj ∩ Ck.

In the sequel, the set S is assumed to be in general position, and the set of
Voronoi vertices is noted ΣS .
Delaunay complex. The Delaunay complex DS of the set of points S is the
simplicial complex dual to the anisotropic geodesic Voronoi diagram. It is the
set of triangles, edges and vertices that can be defined as follows:

the set of vertices of DS is the set of points S,
two points of S are connected by an edge of DS if their respective Voronoi
cells are adjacent in VS

(xi, xj) ∈ DS ⇐⇒ Ci ∩ Cj 6= ∅.

three points of S form a triangle of DS if their respective Voronoi cells have a
non-empty intersection, that is a Voronoi vertex

(xi, xj , xk) ∈ DS ⇐⇒ Ci ∩ Cj ∩ Ck 6= ∅.

To each Delaunay edge (xi, xj) corresponds a double point wi,j , defined as the
closest point to xi and xj , that is on the Voronoi edge Ci ∩Cj

wi,j
def.= argmin

x∈Ci∩Cj

d(x, xi)
(3)
= argmin

x∈Ci∩Cj

d(x, xj).

Contrary to the Euclidean case, the Delaunay complex DS defined above does
not always define a valid planar triangulation. Some points of S can be isolated,
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Fig. 4. Anisotropic distances (top row) and Voronoi diagrams (bottom row) with a
decreasing anisotropy α. The metric tensor is computed using the structure tensor (8).

i.e. incident to only one edge (their corresponding Voronoi cells are adjacent to
only one other cell). Also, some triangles can overlap. If the sampling S is in
general position and dense enough, then one can prove that DS is a valid planar
triangulation, see [1] for more details.

While the set of edges of DS forms a planar graph (straight line edges), its
geometric realization connects points of S with geodesic paths. The geometric
realization γi,j ∈ P(xi, xj), of a Delaunay edge (xi, xj) ∈ DS , is defined as the
union of the two geodesics joining the double point wi,j to xi and xj .

Numerical Computation. The Voronoi diagram (7) can be computed in par-
allel to the computation of the geodesic distance map US . This requires to track
the index of the closest point in S of any point in the front during the Fast
Marching propagation. This can be done with any algorithm mentioned in Sec-
tion 1. During this propagation, one can also keep track of double points and
Voronoi vertices. For each Delaunay edge (xi, xj) ∈ DS , its double point wi,j

corresponds to the first meeting location of the two fronts emanating from both
xi and xj . After the propagation, the geometric realization of each Delaunay
edge (xi, xj) is extracted by solving two gradient descents, according to (5), to
compute the two geodesics joining wi,j to xi and to xj .

All the geometric tools defined above can thus be extracted using a single
front propagation, which requires O(n log(n)) operations. Furthermore, when
they have been computed for a set of points S, they can be extended to S ∪{xm+1}
by a local propagation restricted to the cell Cm+1, thus requiring on average
O(n log(n)/m) operations.

Figure 4 shows examples of Voronoi diagrams for Riemannian metrics with a
decreasing anisotropy. One can see how the Voronoi cells Ci are stretched along
the main tensor direction e1 for highly anisotropic metrics.



3 Application to Perceptual Grouping

Perceptual grouping is a curve reconstruction problem where one wants to
extract a curve from an image containing a sparse set of curves, eventually
embedded in noise. This problem is relevant both to model good continuation
perception laws and to develop efficient edge detection methods (see for in-
stance [11]). In this paper we restrict ourselves to the detection of a set of
non-intersecting open or closed curves, although other kinds of topological or
regularity constraints could be enforced.

Our algorithm extends the isotropic geodesic grouping method of Cohen [12]
by designing a Riemannian metric that propagates the anisotropy of the sparse
curves to the whole domain. This metric helps to disambiguate difficult situa-
tions where some curves are close from one to each other. This allows a better
reconstruction with less user intervention. The idea of using anisotropic informa-
tion to perform perceptual grouping is introduced in [13] where the completed
contours are local minimizer of a saliency field. Many variational definitions of
perceptual contours have been proposed using local regularity assumption, for
instance with the elastica model of Mumford [14]. In contrast, our completed
contours are anisotropic shortest paths that connect Riemannian Voronoi cells,
thus being the global minimum of a length criterion.

Design of an anisotropic tensor field. The Riemannian metric H needs
to be computed from the noisy input image f : [0, 1]2→R. In order to compute
robustly the local direction of the features, we use a local pooling of the gradient
information that constitutes a sparse set of tensors with a confidence measure.
This sparse tensor field is then integrated by diffusion into a dense field.

The local orientation of a feature around a pixel x is given by the vector
orthogonal to the gradient v(x) = (∇xf)⊥, which is computed numerically with
finite differences (using maybe some little smoothing to cancel noise). This local
direction information can be stored in a rank-1 tensor T0(x) = v(x)v(x)T. In
order to evaluate the local anisotropy of the image, one needs to average this
tensor

T (x) = T0 ∗Gσ(x), (8)

where the four entries of the tensor are smoothed against a Gaussian kernel Gσ

of width σ > 0. The metric H corresponds to the so-called structure tensor, see
for instance [15]. This local tensor T is able to extract both the local direction
of edges and the local direction of textural patterns (see Figure 4, left).

The structure tensor field T defined by (8) gives a robust estimation of the
local anisotropy only close to image features where the gradient is large. In
homogeneous areas (typically outside the salient features), the tensor is nearly
isotropic with small eigenvalues. In order to have a dense anisotropic field, one
needs to extend the anisotropy over the whole domain using some kind of in-
terpolation. This notion of interpolation of local orientations is similar to the
computation of good continuation field, as studied for instance in stochastic
completion fields [16] or tensor voting [17].
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Fig. 5. Computation of a dense tensor field T d(x) from a sparse structure tensor T (x).

In this paper, we propose a simple interpolation method that computes a
dense tensor field with a linear diffusion outside a region of high confidence. The
region of high saliency is computed by thresholding the anisotropy map α of T
defined in (2)

Ωα
def.= {x ∈ Ω \ α(x) > 1− ε} ,

where ε is a small constant. In our numerical examples we choose ε = 0.05. The
orientation of the tensors in Ωα are computed with a high confidence, and in
order to compute a dense tensor field, we compute the following steady state of
a heat diffusion

∀x /∈ Ωα, ∆T d
i,j(x) = 0 and ∀x ∈ Ωα, T d

i,j(x) = Ti,j(x),

where ∆ is the Laplacian with Neumann reflecting conditions on the boundary
∂Ω and where (Ti,j)i,j=1,2 are the components of the structure tensor.

In order to turn the dense tensor field T d into a Riemannian metric, we apply
a non-linear mapping to its eigenvalues,

T d(x) = µ1e1e1
T + µ2e2e2

T =⇒ H(x) = ψ1(µ1)e1e2T + ψ2(µ2)e2e2T. (9)

where ψi is a decreasing function. In this paper, we use ψi(x) = (η + |x|)−1 for
a small value of η. Figure 5 shows examples of the proposed method.

Anisotropic Perceptual Grouping. Our anisotropic grouping algorithm pro-
ceeds by computing a perceptual graph D̃S of a set of points S provided by the
user. This perceptual graph is a sub-graph of the set of edges of DS .

The use of the anisotropic metric H defined in (9) helps to reduce the user
intervention by grouping curves that obey a good continuation property with
respect to the anisotropic tensor field. This is performed by ordering the edges
(xi, xj)∈DS with respect to their respective geodesic distance d(xi, xj). The
edges are progressively inserted as long as the reconstructed curves are closed or
open but non-intersecting. This topological constraint is enforced by monitoring
the current degree δi of each point, which should be smaller or equal to 2. The
algorithm is detailed in Table 1.



1. Initialization: set D̃S ← ∅, and Π ← DS .
2. Select edge: set (xi, xj)← argmin

(x,y)∈Π

d(x, y). Remove it: Π ← Π − {(xi, xj)}.

3. Check topology: if δi < 2 and δj < 2, then update D̃S ← D̃S ∪ {(xi, xj)} and set
δj ← δj + 1 and δi ← δj + 1.

4. Stop: while Π 6= ∅, go back to 2.

Table 1: Anisotropic perceptual grouping algorithm.

Figure 6 compares the results of perceptual grouping using an isotropic metric
(which is equivalent to the algorithm developed in [12]) to our algorithm that
uses the dense tensor field T d. Contrary to the isotropic method, our anisotropic
metric enables a correct grouping that obeys a good continuation property.

Image f Isotropic D̃S Anisotropic D̃S

Dense metric T d Isotropic grouping Anisotropic grouping

f and T d Isotropic D̃S Grouping Anisotropic D̃S Grouping

Fig. 6. Comparison of isotropic and anisotropic Riemannian metrics for perceptual
grouping.

4 Application to Meshing of Planar Domains

Planar domain meshing requires to build a good quality triangulation of a
given domain. Triangles with anisotropic shape and varying sizes are highly desir-
able because of their capability to represent efficiently functions with directional
singularities that one encounters for instance in parabolic PDE’s near shocks.



This section proposes a new anisotropic meshing algorithm that conforms the
shape and size of the triangles to the tensor field of a Riemannian metric.

Classical planar domain meshing algorithms are based on Euclidean Delaunay
triangulation. They proceed by progressively inserting Voronoi vertices, see for
instance [18, 19]. These points are inserted in order to split triangles that are
poorly shaped, and also to ensure a minimum size of the triangles.

Anisotropic meshes can be built using a local modification of the metric
[20] or anisotropic elastic forces [21], bubble packing [22], simplified anisotropic
metric [3]. This latter approach is used in conjunction with Ruppert’s Delaunay
refinement algorithm to provide anisotropic triangulation with guaranties on the
aspect ratio of the triangles. This algorithm is extended to domains with curves
by [23], and an alternative construction of the anisotropic Voronoi diagram is
proposed in [24]. The simplified distance has been applied to image sampling
[25], optimal samples placement with centroidal tessellations [26] and surface
remeshing [27].

n this paper, we propose a new Delaunay refinement algorithm that extends
the algorithm of Ruppert [18], and the one of Labelle and Shewchuck [3], with
anisotropic geodesic distances. It also extends the isotropic farthest point seeding
strategy of [28] with anisotropic metrics and domains with arbitrary boundaries.

As these algorithms, our anisotropic meshing algorithm proceeds by itera-
tively inserting points to an already computed set of points S. The inserted
points are the Voronoi vertices of the anisotropic geodesic Voronoi diagram VS .
The resulting mesh is the Delaunay complex DS dual to VS . The main difficulty
is that DS is not necessarily a valid planar triangulation if S is not dense enough.
As described in Section 2, this is due to the presence of some isolated points or
some overlapping triangles. As in [3] and [24], the algorithm automatically add
points to overcome these problems and to guaranty a valid planar triangulation.

At least one point of S is located on each boundary curve, and these boundary
points segment ∂Ω as a set of sub-curves

∂Ω =
⋃
i,j

θi,j with
{
θi,j ∈ P(xi, xj),
θi,j ∩ S = {xi, xj},

(one can have xi = xj if there is only one point on a curve).
In order to compute an anisotropic triangular mesh with triangles of high

quality with respect to the local metric, one needs to iteratively insert the
Voronoi vertex Vi,j,k dual to the Delaunay triangle (xi, xj , xk) with the smallest
circumradius to shortest edge ratio

ρ(Vi,j,k) =
US(Vi,j,k)

min(d(xi, xj), d(xj , xk), d(xk, xi))
,

which is a quantity computed for each Voronoi vertex in parallel to the FM
propagation. In the Euclidean domain, a triangle (xi, xj , xk) with a high value
of ρ(Vi,j,k) is badly shaped since its smallest angle is close to 0. As explained
in [3], this property extends to an anisotropic metric H if angles are measured
using the inner product defined by H.



One can also consider the farthest point strategy to refine the mesh, e.g. the
Voronoi vertex Vi,j,k with the greatest distance US(Vi,j,k) is iteratively inserted.

The major obstacle to these insertions (points to get a planar triangulation
and Voronoi vertices) is that the boundary ∂Ω should always be represented in
the triangulation. This can be broken if a point xk is located too close to the
boundary. A boundary sub-curve θi,j ∈ ∂Ω is said to be encroached by a point
xk ∈S, xk 6∈ ∂Ω, if the Voronoi cell Ck of xk satisfies Ck ∩ ∂Ω 6= ∅. Thus, the edge
(xi, xj) cannot be part of the Delaunay triangulation, and it is automatically split
by the algorithm by inserting the point yi,j ∈ θi,j ∩Ck as close to the midpoint
of θi,j as possible. Similarly, Voronoi vertices are not added if they encroach any
boundary sub-curve (the sub-curve is subdivided instead).

Table 2 details this algorithm. A bound ρ? on ρ enforces the refinement to
reach some quality criterion, while a bound U? enforces a uniform refinement to
match some desired triangle density.

1. Initialization: set S with at least one point on each curve of Ω, compute US with
a Fast Marching.

2. Boundary enforcement: while it exists θi,j ⊂ ∂Ω encroached by some xk ∈ S,
subdivide: S ← S ∪ {yi,j} (see text). Update US with a local Fast Marching.

3. Triangulation enforcement: while it exists (xi, xj) ∈ DS with xi or xj isolated,
insert argmax

x∈Ci∩Cj

US(x). Update US with a local Fast Marching.

4. Select point: s? ← argmin
s∈ΣS−∂Ω

ρ(s) (or s? ← argmax
s∈ΣS−∂Ω

US(s)).

– If in S ∪ {s?}, s? encroaches some θi,j ⊂ ∂Ω, subdivide: S ← S ∪ {yi,j}.
– Otherwise, add it: S ← S ∪ s?.
Update US with a local Fast Marching.

5. Stop: while ρ(s?) > ρ? or US(s?) > U?, go back to 2.
6. Triangulation enforcement: if it exists two adjacent triangles that overlap, add the

dual Voronoi vertex of one of them to S, update US with a local Fast Marching,
and go back to 2.

Table 2: Anisotropic planar domain meshing algorithm.

Figure 7 shows examples of meshing with a decreasing value of the parame-
ter ρ?. The number of points is more and more important while ρ? is decreasing.
Figure 8 shows results of meshing with the farthest point strategy (parameter
U∗) for several tensor fields.

The tensor field can be given by the user (top row) or computed from some
background image (using the structure tensor, equation (8)), which can be in-
teresting to perform image approximation by linear splines on triangles.

Figure 9 shows that our algorithm can handle domain Ω or arbitrary com-
plexity. Here the tensor field is computed to follow the medial axis of the domain,
thus stretching the triangles in an appropriate direction.



tensor field

41 points inserted 75 points inserted 150 points inserted

Fig. 7. Meshing of a square with an increasing number of points, which is controlled
by the parameter ρ?. The initial point set S is the four corner points.

Conclusion

This paper has detailed how several notions from computational geometry
extend seamlessly to the geodesic setting. This allows to incorporate important
knowledge about the directionality of the features to solve more efficiently prob-
lems in computer vision and graphics. We explore two particular applications,
perceptual grouping and domain meshing, where this anisotropy allows to over-
come several limitations of previous approaches.
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