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6 BD du Maréchal Juin, 14050 Caen Cedex France

Abderrahim Elmoataz (abder@greyc.ensicaen.fr)
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Abstract. We propose a discrete regularization framework on weighted graphs of arbitrary
topology, which unifies local and nonlocal processing of images, meshes, and more generally
discrete data. The approach considers the problem as a variational one, which consists in
minimizing a weighted sum of two energy terms: a regularization one that uses the discrete p-
Dirichlet form, and an approximation one. The proposed model is parametrized by the degree p
of regularity, by the graph structure and by the weight function. The minimization solution
leads to a family of simple linear and nonlinear processing methods. In particular, this family
includes the exact expression or the discrete version of several neighborhood filters, such as the
bilateral and the nonlocal means filter. In the context of images, local and nonlocal regulariza-
tions, based on the total variation models, are the continuous analogue of the proposed model.
Indirectly and naturally, it provides a discrete extension of these regularization methods for
any discrete data or functions.
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1. Introduction

Smoothing, denoising, restoration and simplification are fundamental problems
of image processing, computer vision and computer graphics. The aim is to
approximate a given image or a given model/mesh, eventually corrupted by
noise, by filtered versions which are more regular and simpler in some sense. The
principal difficulty of this task is to preserve the geometrical structures existing
in the initial data, such as discontinuities (object boundaries, sharp edges), rapid
transitions (fine structures), and redundancies (textures).

Many methods have been proposed to handle this problem, depending on the
domain of application. Among them, variational models, energy minimization
and partial differential equations (PDEs) have shown their efficiency in numerous
situations. In the context of image processing, regularization methods based
on the total variation (TV) and its variants, as well as non-linear/anisotropic
diffusions, are among the most important ones, see for example (Alvarez et al.,
1993; Weickert, 1998; Paragios et al., 2005; Chan and Shen, 2005; Aubert and
Kornprobst, 2006) and references therein. Another important class of methods
are statistical and averaging filters, such as median, mean, mode and bilateral
filters (Lee, 1983; Smith and Brady, 1997; Tomasi and Manduchi, 1998; Griffin,
2000). These filters can be interpreted as weighted neighborhood filters, and most
of them are related to PDEs and energy minimization (Barash, 2002; Sochen
et al., 2001; Buades et al., 2005; Mrázek et al., 2006). While all of these methods
use weight functions that take into account local image features, a significant ad-
vance is the introduction of the nonlocal means (NLM) filter which uses nonlocal
features based on patches (Buades et al., 2005). This latter nonlocal neighbor-
hood filter outperforms the capabilities of the previous methods, particularly in
the preservation of fine structures and textures. Then, several other filters using
similar ideas have been proposed (Kervrann et al., 2007; Brox and Cremers,
2007). A variational understanding of the NLM filter was first developed as a
non-convex energy functional (Kinderman et al., 2005), and more recently as a
convex quadratic energy functional (Gilboa and Osher, 2007a; Gilboa and Osher,
2007b).

In the context of mesh processing, smoothing and denoising tasks are usually
performed according to geometric flows. The most commonly used technique is
the Laplacian smoothing which is fast and simple, but which produces over-
smoothing and shrinking effects (Taubin, 1995). Inspired by the efficiency of
image denoising methods mentioned above, the most recent methods include the
mean and the angle median filters for averaging face normals (Yagou et al., 2002),
the bilateral filter (Fleishman et al., 2003; Jones et al., 2003), and the NLM fil-
ter (Yoshizawa et al., 2006). Also several anisotropic diffusion flows for simplicial
meshes and implicit surfaces have been proposed to preserve and enhance sharp
edges, such as: weighted Laplacian smoothing (Desbrun et al., 2000), anisotropic
geometric diffusion using diffusion tensor (Clarenz et al., 2000), mean curvature
flow (Hildebrandt and Polthier, 2004), discrete Laplace-Beltrami flow (Bajaj and
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Xu, 2003; Xu, 2004), and discrete Willmore flow (Bobenko and Schröder, 2005).
While these flows are conceived to filter the position of the vertices of a mesh, a
different approach is introduced by (Tasdizen et al., 2003). This approach filters
the normal map of an implicit surface, and manipulates the surface in order to
fit with the processed map.

In both image and mesh processing, the data is discrete by nature. In most
of the methods based on energy minimization, PDEs and diffusion flows, data
are assumed to be defined on a continuous domain. Then a numerical solution
is adapted to the discrete domain upon which the data is naturally defined. An
alternative is to formalize the smoothing/denoising problem directly in discrete
settings. This is the case for neighborhood filters, which are mainly based on
discrete weighted Laplacians. See (Chung, 1997; Cvetković et al., 1980) for a de-
scription of these operators in the general context of graph theory. In particular,
it is shown that Laplacian filtering is equivalent to Markov matrix filtering, and
by consequence it is also related to spectral graph filtering. Similar work for image
denoising has been proposed by (Coifman et al., 2006; Szlam et al., 2006). An-
other interesting work is the digitization of the TV and the ROF model of images
onto unweighted graphs (Osher and Shen, 2000; Chan et al., 2001). This discrete
formulation has received much less attention than its continuous analogue. An
extension of this model, using a normalized p-Dirichlet form on weighted graphs,
is proposed by (Zhou and Schölkopf, 2005) in the context of semi-supervised
learning. Other methods, developed in the context of image filtering, that can
be considered as discrete regularizations on unweighted graphs (Chambolle,
2005; Darbon and Sigelle, 2004). These regularizations yield to Markov random
fields where only binary variables are involved in the minimization.

In the same digital context, we propose in this paper a general variational
formulation of the smoothing/denoising problem for data defined on weighted
graphs (Bougleux et al., 2007a). It is also a direct extension of the digital ROF
model, but based on another p-Dirichlet form. There exist several advantages
of the proposed approach. In particular, it leads to a family of discrete and
semi-discrete diffusion processes based on the combinatorial p-Laplacian. For
p = 2, this family includes many neighborhood filters used in image processing.
Moreover, local and nonlocal regularizations are formalized within the same
framework, and which correspond to the transcription of the nonlocal continuous
regularizations proposed recently for p = 2 and p = 1. Thus, data which have
a natural graph structure (images, polygonal curves and surfaces, networks,
etc), can be represented by more complex graph structures, which take into
account local or nonlocal interactions. In the context of image processing, we
also show that we can use simplified versions represented by region adjacency
graphs (RAG).

The rest of this paper is organized as follows. In the next section, we define
difference operators on weighted graphs that are used to construct the regulariza-
tion framework and the associated family of discrete diffusion processes presented
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in Section 3. In Section 4, the obtained processes are analyzed and related to
existing ones. Finally we give some experimentations for different values of p
and weight functions in the context of image and mesh processing (smoothing,
denoising). In particular we show that for p→ 0, the diffusion processes behave
like simplification and clustering methods.

2. Operators on Weighted Graphs

In this section, we recall some basic definitions on graphs, and we define difference
operators which can be considered as discrete versions of continuous differential
operators. Analogue definitions and properties have also been used in the context
of functional analysis on graphs (Bensoussan and Menaldi, 2005; Friedman and
Tillich, 2004), semi-supervised learning (Zhou and Schölkopf, 2005) and image
processing (Bougleux and Elmoataz, 2005).

2.1. Graphs and Spaces of Functions on Graphs

A weighted graph G = (V,E, w) consists of a finite set V ofN vertices and a finite
set E ⊂ V ×V of weighted edges. The weight of each edge (u, v) ∈ E, noted wuv, is
non-negative. In many cases, it is given by the weight function w : V ×V → R

+,
which verifies :

w(u, v) =

{
wuv if (u, v) ∈ E,

0 otherwise.

The weight represents the similarity between two vertices of the graph (u and
v are similar if wuv = 1). In this paper, the considered graphs are connected,
undirected ((u, v) ∈ E ⇔ (v, u) ∈ E with w(u, v) = w(v, u)), with no self-loops
or multiple edges.

The degree of a vertex, noted δw : V → R
+, measures the sum of the weights

in the neighborhood of that vertex :

δw(u) =
∑

v∼u

wuv, ∀u ∈ V ,

where the notation v ∼ u denotes the vertices of V connected to the vertex u by
an edge of E.

Functions on graphs. The graphs considered here are topological. The data to
be processed are represented by real-valued functions f : V → R, which assign
a real value f(u) to each vertex u ∈ V (the case of vector-valued functions is
considered in Section 5.1). These functions form a finite N -dimensional space.
They can be represented by vectors of R

N , and interpreted as the intensity of a
discrete signal defined on the vertices of the graph. When such functions come
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from the discretization of continuous functions defined in a continuous domain,
the geometry of that domain is usually encoded into the weight function.

By analogy with continuous functional spaces, the discrete integral of a func-
tion f : V → R, on the graph G, is defined by

∫
G
f =

∑
u∈V f(u)m(u), where

m : V → R
+ is a measure on the neighborhood of the vertex u. In the sequel,

and without lost of generality, we set m(u) = 1 for all u ∈ V .
Let H(V ) denotes the Hilbert space of the real-valued functions f : V → R.

It is endowed with the usual inner product:

〈f, h〉H(V ) =
∑

u∈V

f(u)h(u), f, h : V → R, (1)

and with the induced L2 norm: ‖f‖2 = 〈f, f〉1/2
H(V ).

Also, there exist functions defined on the edges of the graph, such as the
weight function. Let H(E) be the space of real-valued functions F : E → R

defined on the edges of G. It is endowed with the inner product:

〈F,H〉H(E) =
∑

u∈V

∑

v∼u

F (u, v)H(u, v), F,H : E → R, (2)

One can remark that the functions do not need to be symmetric, and their inner
product can be rewritten as:

〈F,H〉H(E) =
∑

(u,v)∈E

F (u, v)H(u, v), F,H : E → R. (3)

The induced L2 norm is defined by: ‖F‖2 = 〈F, F 〉1/2
H(E).

2.2. Difference Operator, Edge Derivative and Adjoint

All the basic operators considered in this paper are defined from the difference
operator or the directional derivative. There exist several definitions of these
operators on graphs (Requardt, 1997; Bensoussan and Menaldi, 2005; Friedman
and Tillich, 2004). Here, we propose a definition of the difference operator that al-
lows to retrieve the expression of the combinatorial p-Laplace operator (Bougleux
et al., 2007a), and the expression of the normalized p-Laplace operator (Zhou
and Schölkopf, 2005).

The weighted difference operator of a function f ∈ H(V ), noted dw : H(V ) →
H(E), is defined on an edge (u, v) ∈ E by:

dw(f)(u, v) = γw(v, u)f(v)− γw(u, v)f(u), ∀(u, v) ∈ E, (4)

where γw : V ×V → R
+ is in the form γw(u, v) =

√
ψ(u, v)w(u, v). In the sequel,

the value of γw at an edge (u, v) is noted γuv. The difference operator is linear

and antisymmetric. By analogy with continuous functional analysis, this implies
the definition of the edge derivative.
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The edge directional derivative of a function f ∈ H(V ) at a vertex u, along
an edge e = (u, v), is defined by:

∂f

∂e

∣∣∣∣
u

= ∂vf(u) = dw(f)(u, v). (5)

If γuv = γvu, then this definition is consistent with the continuous definition of
the derivative of a function, e.g., if f(u) = f(v) then ∂vf(u) = 0. Moreover, note
that ∂uf(v) = −∂vf(u), and ∂uf(u) = 0.

The adjoint operator of the difference operator dw, denoted by d∗w : H(E) →
H(V ), is defined by:

〈dwf,H〉H(E) = 〈f, d∗wH〉H(V ), f ∈ H(V ), H ∈ H(E). (6)

Using the definitions of the inner products in H(V ) and H(E), and the definition
of the difference operator, we obtain the expression of d∗w at a vertex of the graph.

PROPOSITION 1. The adjoint operator d∗w of a function H ∈ H(E) can be

computed at vertex u ∈ V by:

d∗w(H)(u) =
∑

v∼u

γuv(H(v, u)−H(u, v)). (7)

Proof: see Appendix A.

The adjoint operator is linear. It measures the flow of a function in H(E) at
each vertex of the graph. By analogy with continuous differential operators, the
divergence of a function F ∈ H(E) is defined by divwF = −d∗wF . Then, it is
easy to show the following null divergence property.

PROPERTY 1. If γw is symmetric, then
∑

u∈V divw(F )(u) = 0, ∀F ∈ H(E).

2.3. Gradient Operator

The weighted gradient operator ▽w of a function f ∈ H(V ), at a vertex u ∈ V ,
is the vector operator defined by:

▽wf(u) = (∂vf(u) : v ∼ u) = (∂v1
f(u), . . . , ∂vk

f(u)) , vi ∼ u. (8)

One can remark that this definition does not depend on the graph structure,
and thus the gradient has the same general expression for regular, irregular,
geometric and topological graphs.

By analogy with the continuous definition of the gradient, the graph-gradient
is a first order operator defined for each vertex in a local space given by the
neighborhood of this vertex. Moreover, many discrete gradient operators can be
formulated from the above definition by choosing the adequate expressions of
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the function γw and the similarity function w involved in the edge derivative.
In particular, in the context of image processing, we can retrieve the classical
discrete gradient used in the numerical discretization of the solution of PDE’s
on grid graphs of 4-adjacency.

The local variation of f , at a vertex u, is defined by the following gradient
L2-norm:

|▽wf(u)| =

√∑

v∼u

(∂vf(u))2. (9)

It can be viewed as a measure of the regularity of a function around a vertex.
From the definition of the function γw, it is also written as:

|▽wf(u)| =

√∑

v∈V

(∂vf(u))2 =

√∑

v∈V

w(u, v)ψ(u, v)(f(v)− f(u))2.

This is due to the fact that w(u, v) = 0 if v 6∼ u. This formulation is nonlocal,
since all the vertices of V are included in the summation. It takes all its meaning
in the context of discrete set of data (see Section 5).

Other measurements of the regularity can be performed by different gradient
norms, such as the Lp-norm:

|▽wf(u)|p =

(
∑

v∼u

|∂vf(u)|p
) 1

p

, p ∈ (0,+∞). (10)

These gradient norms are used in Section 3 to construct several regularization
functionals.

2.4. The p-Laplace Operator

The p-Laplace operator describes a family of second order operators. This family
includes the Laplace operator for p = 2, and the curvature operator for p = 1.
Based on the weighted difference operator and its adjoint defined in Section 2.2,
we use the classical definition of the p-Laplace operator in order to obtain its
local expression at a vertex of the graph.

General Case. Given a value of p ∈ (0,+∞), the weighted p-Laplace operator

∆p
w : H(V ) → H(V ) is defined by:

∆p
wf = d∗w(| ▽w f |p−2dwf). (11)

It is a nonlinear operator, excepted in the case of p = 2 (since dw and d∗w are
linear).

PROPOSITION 2. The weighted p-Laplace operator ∆p
w of a function f ∈ H(V )

can be computed at vertex u ∈ V by:

∆p
wf(u) =

∑

v∼u

γuv

(
| ▽w f(u)|p−2 + | ▽w f(v)|p−2

)
(γuvf(u) − γvuf(v)) . (12)
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Equivalently, it also corresponds to the following expressions:

∆p
wf(u) =

∑

v∼u
e=(u,v)

γuv
∂

∂e

( | ▽w f |p−2

γ

∂f

∂e

)∣∣∣∣
u

(13)

∆p
wf(u) = −

∑

v∼u

γuv

(
| ▽w f(u)|p−2 + | ▽w f(v)|p−2

)
∂vf(u). (14)

Proof : see Appendix A.

Eq. (13) and Eq. (14) show the relation between second order and first order
derivatives.

Remark that the gradient of the function f can be null (locally flat functions).
When p < 2, in order to avoid a division by zero in the expression of the p-Laplace
operator, the gradient has to be regularized as:

| ▽w f |ǫ =
√
| ▽w f |2 + ǫ2, (15)

where ǫ → 0 is a positive constant.

Case of p=2, the Laplace Operator. When p = 2, Eq. (11) reduces to
∆2

wf = d∗w(dwf) = ∆wf , which is the expression of the weighted Laplace operator

of the function f on the graph. Since both the difference and its adjoint are linear,
it is also a linear operator. At a vertex u ∈ V , it can be computed by:

∆wf(u)
(12)
= 2

∑

v∼u

γuv(γuvf(u) − γvuf(v)) (16)

(13)
=

∑

v∼u
e=(u,v)

γuv
∂

∂e

(
1

γ

∂f

∂e

)∣∣∣∣
u

(14)
= −

∑

v∼u

γuv∂vf(u). (17)

When γw is symmetric, Eq. (17) reduces to
∑

v∼u ∂
2
vf(u) = −∑v∼u γw∂vf(u).

Also, Eq. (17) is the discrete analogue of the Laplace-Beltrami operator on
manifolds, defined in local coordinates as:

∆Mf = divM(▽M) =
1√
|g|
∂i

(√
|g|gij∂jf

)
,

where g is a metric tensor on the manifold M, and gij the components of its
inverse. In particular, the Laplace-Beltrami operator is widely used to process
meshes and images, see (Xu, 2004; Kimmel et al., 2000). There exists several
discrete expressions of the Laplace or the Laplace-Beltrami operator, depending
on the context. Many of them can be expressed using Eq. (16). Indeed, general
expressions have been formulated in the context of spectral graph theory (Chung,
1997), which studies the eigenvalues and the eigenvectors of Laplacian matrices.



9

Table I recall the definitions and the local expressions of the two well-known
graph Laplacians that can be derived from the weighted Laplace operator (16)
by choosing specific forms of the function γw. The matrix W is the weight matrix
such that W (u, v) = w(u, v) for all u, v ∈ V , and D is the diagonal degree matrix
defined by D(u, v) = 0 if u 6= v and D(u, u) = δw(u) otherwise.

Table I. Expressions of the Laplace operator related to Eq. (16).

combinatorial Laplacian normalized Laplacian

L = D − W
Ln = D−1/2LD−1/2

= I − D−1/2WD−1/2

δw(u)f(u) −∑v∼u wuvf(v) f(u) − 1√
δw(u)

∑
v∼u

wuv√
δw(v)

f(v)

γ1 = γw =
√

w/2 γ2(u, v) = γw(u, v) =
√

wuv

2δw(u)

These two Laplace operators are used in many applications based on diffusion
processes on graphs, which is discussed in Section 4.1.

Case of p=1, the curvature Operator. When p = 1, Eq. (11) reduces
to ∆1

wf = d∗w(| ▽w f |−1dwf) = κwf , which represents the weighted curvature

operator of the function f . It is nonlinear and it can be computed locally by:

κwf(u)
(12)
=
∑

v∼u

γuv

(
1

| ▽w f(v)| +
1

| ▽w f(u)|

)
(γuvf(u) − γvuf(v)). (18)

When the graph is unweighted (w = 1) and γ = γ1, this last expression cor-
responds to the curvature operator proposed by (Osher and Shen, 2000; Chan
et al., 2001) in the context of image processing (see next section). Then, the
p-Laplace operator, defined by Eq. (12) with γ1 and γ2, can be seen as a direct
extension of the combinatorial and normalized Laplace and curvature operators.

3. Proposed Framework

In this section, we present the variational model that we propose to regularize
functions defined on the vertices of graphs, as well as the discrete diffusion
processes associated with it.
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3.1. The Discrete Variational Model Based on Regularization

Let G = (V,E, w) be a weighted graph, and let f 0 : V → R be a given function
of H(V ). In real applications, f 0 represents measurements which are perturbed
by noise (acquisition, transmission, processing). We consider in this paper the
case of additive noise µ ∈ H(V ), such that f 0 = h + µ and h ∈ H(V ) is the
noise free version of f 0. To recover the unknown function h, f 0 is regularized
by seeking for a function f ∈ H(V ) which is not only regular enough on G, but
also close enough to the initial function f 0. This optimization problem can be
formalized by the minimization of a weighted sum of two energy terms:

min
f :V →R

{
Rp

G(f) + λ
2
‖f − f 0‖2

2

}
. (19)

The first energy functional Rp
G measures the regularity of the function f over

the graph, while the second measures its closeness to the initial function. The
parameter λ ≥ 0 is a fidelity parameter which specifies the trade-off between the
two competing functionals.

The regularity of the desired solution f is measured by its p-Dirichlet energy
based on the local variation (9), which is given by:

Rp
G(f) =1

p

∑

u∈V

|▽wf(u)|p , p ∈ (0,+∞),

(4)
= 1

p

∑

u∈V

(
∑

v∼u

(γvuf(v) − γuvf(u))2

) p

2

.

(20)

It is the weighted discrete analogue of the p-Dirichlet energy of continuous
functions defined on a continuous bounded domain Ω of the Euclidean space:
Jp(f) = 1

p

∫
Ω
|▽|xf |pdx, f : Ω ⊂ R

m → R.

When p = 2, the regularization functional (20) is the Dirichlet energy and the
minimizer (19) corresponds to the Tikhonov regularization. Another important
case is the total variation and the ROF model of images (or fitted TV), which
are obtained with p = 1.

For p ≥ 1, both functionals in the minimizer (19) are strictly convex. Then
if the solution of problem (19) exists, it is unique. As limf→∞Ep

w(f) = ∞, by
standard arguments in convex analysis, problem (19) has a unique solution which
can be computed by solving:

∂

∂f(u)

(
Rp

G(f) + λ
2
‖f − f 0‖2

2

)
= 0, ∀u ∈ V .

The derivative of the discrete p-Dirichlet functional is computed using the fol-
lowing property.

PROPERTY 2. ∂
∂f(u)

Rp
G(f) = ∆p

wf(u), ∀u ∈ V .
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Proof : see Appendix B.

Then, the solution of problem (19) is the solution of the following system of
equations:

∆p
wf(u) + λ(f(u) − f 0(u)) = 0, ∀u ∈ V . (21)

This last equation can be interpreted as discrete Euler-Lagrange equations. Con-
trary to the continuous case, it does not involve any PDEs and it is independent
of the graph structure. By substituting the expression of the p-Laplace operator
into Eq. (21), we obtain directly:

(
λ+

∑

v∼u

αuv(f)

)
f(u) −

∑

v∼u

βuv(f)f(v) = λf 0(u), ∀u ∈ V , (22)

where the coefficients α and β are used to simplify the notations:
{
αuv(f) =

(
| ▽w f(u)|p−2 + | ▽w f(v)|p−2

)
γ2

uv

βuv(f) =
(
| ▽w f(u)|p−2 + | ▽w f(v)|p−2

)
γuvγvu.

When p 6= 2, (22) is a nonlinear system. When p = 2, the system is linear and
can be solved efficiently with several numerical methods which converge close to
the solution of the minimization problem. In the next sections, we propose to
use simple and fast algorithms to find a solution in the general case.

When p < 1, Rp
G is non-convex, and the global minimization may not exist.

Nevertheless, this does not mean that the diffusion processes associated with
this case are not interesting.

3.2. Discrete Diffusion Processes

As in the continuous case, the solution of the minimization problem can be
formulated as diffusion processes. The solution of the system of equations (21)
can be obtained by considering the infinitesimal marching step descent:

{
f (0) = f 0

d
dt
f (t)(u) = −∆p

w(f)(u) + λ(f 0(u) − f(u)), ∀u ∈ V ,
(23)

where f (t) is the parametrization of the function f by an artificial time. This is a
system of ordinary differential equations. Contrary to PDEs methods, no space
discretization is necessary. Its solution can be efficiently approximated by local
iterative methods. By simply using the Runge-Kutta method of order one, the
algorithm that computes the approximated solution is given by:




a. Initialization with f (0)(u) = f 0(u), ∀u ∈ V.

b. For t = 0 to a fixed or iteratively computed stopping time, do:

f (t+1)(u) = f (t)(u) + τ(−∆p
wf

(t)(u) + λ(f 0(u) − f (t)(u))), ∀u ∈ V ,

(24)
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where τ > 0 is the size of the infinitesimal marching step.
Another method to solve the system of equations (22) is to use the Gauss-

Jacobi iterative algorithm given by the following steps:





a. Initialization with f (0)(u) = f 0(u), ∀u ∈ V.

b. For t = 0 to a fixed or iteratively computed stopping time, do:




αuv(f
(t)) =γ2

uv

(
| ▽w f

(t)(v)|p−2 + | ▽w f
(t)(u)|p−2

)
, ∀(u, v) ∈ E

βuv(f
(t)) =γuvγvu

(
| ▽w f

(t)(v)|p−2 + | ▽w f
(t)(u)|p−2

)
, ∀(u, v) ∈ E

f (t+1)(u) =
λf 0(u) +

∑
v∼u βuv(f

(t))f (t)(v)

λ+
∑

v∼u αuv(f (t))
, ∀u ∈ V .

(25)
Let ϕ be the function given by:

ϕuv(f) =
βuv(f)

λ+
∑

v∼u αuv(f)
if u 6= v, and ϕvv(f) =

λ

λ+
∑

v∼u αuv(f)

Then, the regularization algorithm (25) is rewritten as:

{
f (0) = f 0

f (t+1)(u) = ϕvv(f
(t))f 0(u) +

∑
v∼u ϕuv(f

(t))f (t)(v), ∀u ∈ V .
(26)

At each iteration, the new value f (t+1), at a vertex u, depends on two quantities,
the original value f 0(u), and a weighted average of the existing values in a
neighborhood of u. When the function γw is symmetric, e.g. αuv = βuv, the
function ϕ satisfies ϕuu +

∑
v∼u ϕuv = 1. In this case, the proposed algorithm

describes a forced low-pass filter.
The above methods describe families of diffusion processes, parametrized by

the graph structure, the weight function, the fidelity parameter λ, and the de-
gree of regularity p. For specific values of these parameters, the algorithm (31)
corresponds exactly to well-known diffusion processes used in image processing.
It is the one we use in the applications described in Section 5.

4. Analysis and Related Works

In the sequel, we discuss particular cases of the proposed regularization frame-
work, and we show the relation with spectral graph theory and recent nonlocal
continuous functionals defined in the context of image processing.

4.1. Link to graph theory and spectral filtering

Let G = (V,E, w) be a weighted graph. Let f : V → R be a function in H(V )
represented as a vector. It is easy to see that the classical smoothness functionals
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associated with the Laplacians L and Ln (see Table I) are particular cases of the
proposed regularization functional R2

G for specific functions γw:




RL
G(f) =〈f, Lf〉 = 1

2

∑

u∈V

∑

v∈V

w(u, v)(f(u)− f(v))2,

RLn

G (f) =〈f, Lnf〉 = 1
2

∑

u∈V

∑

v∈V

w(u, v)

(
f(u)√
δw(u)

− f(v)√
δw(v)

)2

.

Then the proposed p-Dirichlet energy Rp
G can be seen as a direct extension of

the above ones. In particular, R1
G associated with γw = 1 (unweighted graphs)

has been proposed by (Osher and Shen, 2000) in the context of image restora-

tion. Also, Rp
G associated with γw(u, v) =

√
w(u, v)/δw(u) has been proposed

by (Zhou and Schölkopf, 2005) in the context of semi-supervised classification.
In the present paper, we propose to use Rp

G associated with γw =
√
w in the

context of image and mesh filtering (Bougleux et al., 2007a). Recently, the non-
linear flows associated with p-Dirichlet energies on graphs has been replaced by
a non-iterative thresholding in a non-local spectral basis (Peyré, 2008).

Relation between discrete diffusion and spectral filtering. We consider
the discrete diffusion process (26), for λ = 0, p ∈ (0,+∞) and γw =

√
w. Under

these conditions, an iteration of this process is given by:

f (t+1)(u) =
∑

v∼u

ϕuv(f
(t))f (t)(v), ∀u ∈ V , (27)

where the function ϕ reduces to:

ϕuv(f) =
wuv(| ▽w f(u)|p−2 + | ▽w f(v)|p−2)∑

v∼u wuv (| ▽w f(u)|p−2 + | ▽w f(v)|p−2)
, ∀(u, v) ∈ E.

As we have ϕvu ≥ 0 and
∑

v∼u ϕuv = 1, ϕuv can be interpreted as the probability
of a random walker to jump from u to v in a single step. Let P be the Markov
matrix defined by: P (u, v) = ϕuv if the edge (u, v) ∈ E, and P (u, v) = 0
otherwise. Then the expression (27) can be rewritten as:

f (t+1) = Pf (t) = P tf (0). (28)

An element P t(u, v) describes the probability of transition in t steps. The matrix
P t encodes local similarities between vertices of the graph and diffuses this local
information for t steps to larger and larger neighborhoods of each vertex.

The spectral decomposition of the matrix P is given by Pφi = aiφi, with
1 ≥ a1 ≥ . . . ≥ ai ≥ . . . ≥ aN ≥ 0 the eigenvalues of P , and φi its eigenvectors.
The eigenvectors associated with the k first eigenvalues contain the principal
information. The top non-constant eigenvector φ1 is usually used for finding
clusters and computing cuts (Shi and Malik, 2000). Thus, an equivalent way to
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look at the power of P in the diffusion process (28) is to decompose each value
of f on the first eigenvectors of P . Moreover, the eigenvectors of the matrix P
can be seen as an extension of the Fourier transform basis functions with a−1

i

representing frequencies. It defines a basis of any function f in H(V ), and the
function f can be decomposed on the k first eigenvectors of P as:

f ≈
i=k∑

i=1

〈f, φi〉φi.

This can be interpreted as a filtering process in the spectral domain. Such a
process is used to study the geometry of data set and to analyze functions defined
on it, see (Coifman et al., 2005; Szlam et al., 2006) and references therein.

4.2. Link to continuous nonlocal regularization functionals

The proposed p-Dirichlet energy is by nature both local and nonlocal, depending
on the topology of the graph and the choice of the weight function. Its nonlocal
version is given by:

Rp
G(f) = 1

p

∑

u∈V

| ▽w f(u)|p = 1
p

∑

u∈V

(
∑

v∈V

(γvuf(v) − γuvf(u))2

)p

2

This is the discrete analogue of the following continuous nonlocal regularizer of
a function f : Ω → R defined on a bounded domain Ω of the Euclidean space:

Jp
NL(f) = 1

p

∫

Ω

(∫

Ω

(γyxf(y) − γxyf(x))2dy

)p

2

dx.

In particular, for γw =
√
w, p = 2 and p = 1, this latter corresponds respectively

to: 



J2
NL(f) =

∫

Ω×Ω

w(x, y)(f(y)− f(x))2dydx,

J1
NL(f) =

∫

Ω

(∫

Ω

w(x, y)(f(y)− f(x))2dy

)1

2

dx.

(29)

These two regularizers have been proposed recently in the context of image
processing (Gilboa and Osher, 2007a; Gilboa and Osher, 2007b). The first one is
a continuous variational interpretation of a family of neighborhood filters, such
as the NLM filter (Buades et al., 2005). The proposed regularization framework
is also a variational interpretation of these filters, but established in discrete
settings. The second regularizer is the nonlocal TV functional.

Also in (Gilboa and Osher, 2007b), a nonlocal anisotropic TV functional based
on differences is proposed:

JNLa(f) = 1
2

∫

Ω×Ω

√
w(x, y)|f(y) − f(x)|dydx.
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In the same spirit, we can formulate a general discrete regularizer using the Lp-
norm (10) of the weighted gradient as:

R̃p
G(f) = 1

2p

∑

u∈V

|▽wf(u)|pp , p ∈ (0,+∞),

(10),(4)
= 1

2p

∑

u∈V

∑

v∈V

|γvuf(v) − γuvf(u)|p.
(30)

We can remark that (29) and (30) are the same if p = 2. In the particular case
of γw =

√
w, (30) becomes:

R̃p
G(f) = 1

2p

∑

u∈V

∑

v∈V

w(u, v)
p

2 |f(v) − f(u)|p.

For p = 1, it is the discrete analogue of the nonlocal anisotropic TV func-

tional JNLa. One can remark that the discrete energy R̃p
G is formalized by using

the gradient operator, while the continuous one have been constructed using
differences (Gilboa and Osher, 2007b).

In order to solve the continuous variational model associated to the nonlocal
functionals, the image domain is discretized and becomes equivalent to a graph.
So, both approaches (discrete and continuous) are equivalent. Nevertheless, our
approach can be used to process any function defined on a graph structure, and
extends the notion of regularity with the parameter p.

5. Applications

The family of regularization processes proposed in Section 3 can be used to
regularize any function defined on the vertices of a graph, or on any discrete
data set. Through examples, we show how it can be used to perform image and
polygonal mesh smoothing, denoising and simplification. To do this, we use the
discrete diffusion process (25) with the function γw =

√
w:





f (0) =f 0

f (t+1)(u) =
λf 0(u) +

∑
v∼u wuv(| ▽w f

(t)(v)|p−2 + | ▽w f
(t)(u)|p−2)f (t)(v)

λ+
∑

v∼u wuv(| ▽w f (t)(v)|p−2 + | ▽w f (t)(u)|p−2)
.

(31)
The regularization parameters (p and λ), as well as the structure of the graph
and the choice of the weight function depend on the application. The aim of
this section is not to present the best results, but some applications of the
regularization, in the context of image and mesh processing. In particular, the
regularization using p → 0 behaves like a simplification or a clustering process,
in both local and nonlocal schemes.
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5.1. Case of vector-valued functions

In the case of a vector-valued function f : V → R
m, with f(u) = (f1(u), . . . , fm(u)),

the regularization is performed on each component fi independently. This comes
to have m regularization processes. Then, the local variation |▽w fi| is different
for each component. Applying the regularization in a component-wise manner
is interesting to develop a computational efficient solution. However, in many
applications, component-wise processing can have serious drawbacks contrary to
vector processing solutions.

To overcome this limitation, a regularization process acting on vector-valued
functions needs to be driven by equivalent attributes, taking the coupling be-
tween vector components into account. Therefore, component-wise regularization
does not have to use different local geometries of the function on the graph, but
a vector one. In the case of p = 2, the Laplace operator (16) is the same for the
m components, and the regularization can be performed independently on each
component. But in the case of p 6= 2, the p-Laplace operator (12) is different for
each component, and them regularization processes can be totally independent if
the weight function w does not incorporate any inter-component information. In
order to take into account the inner correlation aspect of vector-valued functions,
the local variation (9) is replaced by the multi-dimensional norm:

| ▽w f(u)|mD =

√√√√
m∑

k=1

| ▽w fi(u)|2.

Then, the proposed regularization applies to each component of the vector-valued
function with a weighting of edges and a vector gradient norm acting both as
coupling between components to avoid drawbacks of applying the regularization
in a component-wise manner.

5.2. Application to image Processing

To process an image of pixels f 0 : V ⊂ Z
2 → X ⊂ R

m defined on a discrete
space V , several graph structures can be used. The ones based on geometric
neighborhoods are particularly well-adapted to represent the geometry of the
space, as well as the geometry of the function defined on that space. The most
commonly used graph is the k-neighborhood graph Gk = (V,E, w), where the
k-neighborhood of a vertex u = (i, j) ∈ V is the set of vertices located at a
non-null distance lower than k:

Nk(u) = {v = (i′, j′) ∈ V \ {u} : µ(u, v) ≤ k, k > 0},

where µ : V × V → R
+ measures the proximity between two vertices. Then an

edge (u, v) is in Gk iff v ∈ Nk(u) (and reciprocally). By using the Chebyshev
distance µ((i, j), (i′, j′)) = max{|i− i′|, |j − j′|}, the shape of the neighborhood
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corresponds to the standard square widow of size 2k + 1. In particular, G1 is
the 8-adjacency graph of pixels, the 4-adjacency graph of pixels is noted G0,
and the complete graph G∞. We can also consider other distances to construct
the neighborhood, such as the Euclidean distance. The similarity between two
connected vertices is described by the weight function w. In the sequel, we use
the two following ones, which allow to retrieve and to extend several filtering
processes:

w1(u, v) = exp

(
−
‖u− v‖2

L2(R2)

σ2
P

)
exp

(
−
‖f 0(u) − f 0(v)‖2

H(V )

σ2
X

)

wk′

2 (u, v) = exp

(
−ρa(F

f0

k′ (u), F f0

k′ (v))

h2

)

where F f0

k′ (u) ∈ X (2k′+1)(2k′+1) is the local feature corresponding to the values
of f 0 in the neighborhood Nk′(v) ∪ {u}, with 0 ≤ k′ < k fixed:

F f0

k′ (u) = {f 0(v) : v ∈ Nk′(u) ∪ {u}}.

The function ρa measures the distance between the values of f 0 in the neighbor-
hood Nk′:

ρa(F
f0

r′ (u), F f0

r′ (v)) =
r′∑

i=−r′

r′∑

j=−r′

ga((i, j))‖f 0(u+ (i, j)) − f 0(v + (i, j))‖2
2,

where ga is a Gaussian kernel of standard deviation a. This latter can be replaced
by the Chebyshev distance between the position of pixels.

The discrete diffusion associated with the weight function w1 and the graph
G∞ is semilocal, and corresponds to the bilateral filter (Tomasi and Manduchi,
1998) if p = 2, λ = 0 and one iteration. The discrete diffusion associated with the
weight function wk′

2 and the graph G∞ is nonlocal, according to the similarity
measure. For p = 2, λ = 0 and one iteration, this latter diffusion corresponds to
the NLM filter (Buades et al., 2005). For several iterations, these two cases can
be seen as iterated bilateral and NLM filters, without updating the weights at
each iteration1. Iterated versions of these filters, with the weights being updated
at each iteration, exist in the literature. See for example (Paris et al., 2007) for a
recent survey of the bilateral filter and its variants, and (Brox and Cremers, 2007)
for the iterated NLM filter. More generally, for p = 2 and any weight function,
the discrete diffusion performs weighted (combinatorial) Laplacian smoothing.

Another particular case of the discrete diffusion process (31) is the TV digital
filter (Osher and Shen, 2000; Chan et al., 2001), obtained with p = 1 and
w(u, v) = 1 for all (u, v) ∈ E. Due to the constant weight function, the size

1 The weights are updated at each iteration if they depend on the filtered function f .
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(a) f0 : V → R (b) G0, unweighted, λ = 0.01 (c) G0, w0
2 , F

f0

0
= f0, λ = 0.01

(d) G0, unweighted, λ = 0 (e) G8, w1, σ = 6, λ = 0 (f) G8, w5

2 , h = 2, λ = 0

p
=

2
p

=
1

p
=

0
.7

p
→

0

Figure 1. (a) The initial image f0 is regularized until convergence of the discrete diffusion
process (31). (b) Discrete TV regularization. (c) Discrete weighted-TV regularization. (d),
(e) and (f): Behavior of the regularization with λ = 0 and 800 iterations of (31). On G0, it
corresponds to the unweighted Laplacian smoothing for p = 2 and to the digital TV filter for
p = 1. On G8 with w1, it is the iterative bilateral filter (without updating the weights) for
p = 2. On G8 with w5

2 , it is the iterative NLM filter (without updating the weights). The other
cases are the ones proposed in this paper.
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Part of 5th row of Fig. 1 in false colors Part of 6th row of Fig. 1 in false colors
p

=
0
.7

p
→

0

Figure 2. Results presented in Fig. 1 for p < 1 and rendered here in false colors (each color
corresponds to a gray value). We can observe the relation between the size of the neighborhood
and the leveling of the image.

of the neighborhood of the graph cannot be greater than one to preserve the
discontinuities. By using a weighted graph, we obtain the weighted-TV digital
filter, which can be local, semilocal or nonlocal, depending on the weight func-
tion. The difference between the weighted and unweighted cases is illustrated
in Fig. 1(b) and 1(c) on the graph G0, and until convergence of the diffusion.
We can observe that for the same value of λ, using a weight function helps to
preserve the image discontinuities.

In order to compare the results with the particular cases described above, we
give examples of the proposed regularization, for several values of p, and the
weight functions w1 and w2.

f0 : Z
2 → R

3 Gaussian noise (σ = 20) G5, w3
2 , p = 0.7

Figure 3. Denoising of a color image by nonlocal regularization with 4 iterations and λ = 0.01.

Image smoothing/denoising. The behavior of the proposed regularization is
illustrated in Fig. 1(d), 1(e) and 1(f) on an intensity image, for several values
of p, several graph structures and λ = 0 (without the approximation term). The
number of iterations is the same for all the cases (800). We can do two principal
observations. The size of neighborhood of the graph helps to preserve sharp edges
and image redundancies, as well as the use of nonlocal weights. Also, when p < 1
and particularly when p → 0, the regularization behaves like a simplification
procedure. This last observation is depicted in the first row of Fig. 2, where
we can see the effect of the structure of the graph. The local case (with G0),
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which is computed efficiently, could be used in simplification and segmentation
processes. The denoising of a color image is illustrated in Fig. 3 using a nonlocal
representation with p = 0.7. In our experiments, we found that using p < 1 in
the regularization process, with a local or a nonlocal representations, helps to
preserve sharp edges.

Image simplification. Another way to simplify an image is to work on a more
abstract representation than adjacency or neighborhood graphs. One possible
representation is obtained by constructing a fine partition (or over-segmentation)
of the image and by considering neighborhood relations between the regions. It
is generally the first step of segmentation schemes and it provides a reduction of
the number of elements to be analyzed by other processing methods. To compute
the fine partition, many methods have been proposed, such as the ones based
on morphological operators (Meyer, 2001) or graph cut techniques and random
walks (Meila and Shi, 2000). Here, we present a method that uses a graph-based
version of the generalized Voronoi diagram presented by (Arbeláez and Cohen,
2004). The initial image to be simplify is represented by a graph Gk = (V,E),
k = 0 or 1, and a function f : V → R

m, as described previously.
A path c(u, v) is a sequence of vertices (v1, . . . , vm) such that u = v1, v = vm,

and (vi, vi+1) ∈ E for all 1 ≤ i < m. Let CG(u, v) be the set of paths connecting
u and v. We define the pseudo-metric µ : V × V → R

+ to be:

µ(u, v) = min
c∈CG(u,v)

(
m−1∑

i=1

‖dw(f)(vi, vi+1)‖
)

,

where dw is the difference operator (4) defined in Section 2.2. Given a finite set
of source vertices S = {s1, . . . , sk} ⊂ V , the energy induced by µ is given by the
minimal individual energy:

µS(u) = inf
si∈S

µ(si, u), ∀u ∈ V .

Based on the pseudo-metric µ, the influence zone of a source vertex si is defined
to be the set of vertices of V that are closer to si than to any other source vertex
of S:

Zµ(si, S, V ) = {u ∈ V : µ(si, u) ≤ µ(sj, u), ∀sj ∈ S}.
The energy partition of the graph G, with respect to the set of sources S and
the pseudo-metric µ, corresponds to the set of influence zones:

Eµ(S,G) = {Zµ(si, S, V ), ∀si ∈ S}.

With these definitions, the image pre-segmentation consists in finding a set of
source vertices and a pseudo-metric. We use the set of extrema of the intensity of
the function f as a set of source vertices. To obtain exactly an energy partition
which considers the total variation of f along a path, we use dw(f)(u, v) = f(v)−
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(a) original image f0 : V → R (b) region map (c) fine partition

(d) RAG (e) λ = 0.5 (f) λ = 0

Figure 4. Illustration of image simplification. First row: construction of the fine partition by
energy partition. The information in the fine partition is 8 percent of the one in the original
image. Second row: regularization of the fine partition on the RAG with p = 2, w0

2 with

F f
0 = f , and 30 iterations.

f(u) in the pseudo-metric. Then, the energy partition of the graph represents an
approximation of the image, by assigning a model to each influence zone of the
partition. The model is determined by the distribution of the graph values on the
influence zone. Among the different models, the simplest are the constant ones,
as mean or median value of the influence zone. The resultant graph G′ = (V ′, E ′)
is a connectivity graph where V ′ = S and E ′ is the set of edges connecting two
vertices si, sj ∈ S if there exists a vertex of Zµ(si, S, V ) connected to a vertex
of Zµ(sj , S, V ). This last graph is known as the region adjacency graph (RAG)
of the partition. Therefore, image simplification can be performed on the RAG
(or a more complex neighborhood graph) and so the graph regularization can
be computed much faster relatively to classical images. The acceleration factor
depends on the fineness of the partition and on the considered graph.

A result of the simplification process is illustrated in Fig. 4 on an image of
intensity. Fig. 4(b) represents the partition in random colors, and Fig. 4(c) the
reconstructed image from the computed influence zones by assigning the mean
intensity to modelize each zone. In our experiments, we found that the reduction
of the information is at least of 90 percent. As illustrated in Fig. 4(e) and (f), the
simplification scheme can be carried on by regularizing the value of the zones on
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the RAG associated to the fine partition. This simplification scheme has shown
its effectiveness in the context of image segmentation, with other methods to
construct the fine partition (Lezoray et al., 2007).

5.3. Application to polygonal mesh processing

By nature, polygonal curves and surfaces have a graph structure. Let V be the
set of mesh vertices, and let E be the set of mesh edges. If the input mesh is noisy,
we can regularize vertex coordinates or any other function f 0 : V ⊂ R

n → R
m

defined on the graph G = (V,E, w).

f0 : V ⊂ R
2 → R

2 p = 2, λ = 0 p = 2, λ = 0.25

Figure 5. Polygonal curve denoising by diffusion of the position of the vertices. The polygons
edges are unweighted. In the case of λ = 0 shrinkage effects are introduced (30 iterations). The
case of λ > 0 (100 iterations) helps to avoid these undesirable effects.

Mesh denoising. The discrete regularization can be used to smooth and denoise
polygonal meshes. As in image processing, denoising a polygonal curve or surface
consist in removing spurious details while preserving geometric features. There
exists two common frameworks in the literature to do this. The first one considers
the position of the vertices as the function to be processed. The second one
consists in regularizing the normals direction at the mesh vertices.

We illustrate the first scheme in order to show the importance of using the
fitting term in regularization processes, which is not commonly used in mesh
processing. This is illustrated Fig. 5 on a polygonal curve. One can observe that
the regularization performed using the fitting term (λ > 0) helps to avoid the
shrinkage effects obtained without using the fitting term (λ = 0), and which
corresponds to the Laplacian smoothing (Taubin, 1995). The regularization of
polygonal surfaces is illustrated in Fig. 6. Here again, the fitting term helps to
avoid shrinkage effects. On can remark that we use the discrete diffusion (31),
which is not the classical algorithm to perform Laplacian smoothing in mesh pro-
cessing. Most of the methods are based on the algorithm (24) with λ = 0 (Taubin,
1995; Desbrun et al., 2000; Xu, 2004). The proposed p-Laplacian diffusion, which
extends the Laplacian diffusion, is described next for p < 1.
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(a) original mesh (b) normal noise (c) p = 2, λ = 0.5

Figure 6. Mesh denoising. (a) Original Stanford Bunny with |V | = 35949. (b) Noisy Bunny
with normal noise. (c) Regularization of vertex coordinates on the graph (8 iterations of the
diffusion process and w(u, v) = 1/‖u− v‖2

2).

Curve and surface simplification. As in the case of images, when p < 1
the regularization process can be seen as a clustering method. This is illustrated
in Fig. 7 on a polygonal curve, and in Fig. 8 on a polygonal surface. One can
observe that when p → 0, the vertices aggregates. Also, the global shape of the
curve is preserved, as well as the discontinuities, without important shrinkage
effects. This provides a new way of simplifying meshes.

f0 : R
2 → R

2 p = 0.01, t = 10 p = 0.01, t = 100
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Figure 7. Polygonal curve simplification by regularization of the position of the vertices (with
p < 1). The graph is the polygon itself, and w = 1. First row: the vertices. Second row: the
associated processed polygons.
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initial mesh and f0 : R
3 → R

3 p = 1 p = 0.001

Figure 8. Polygonal surface simplification by discrete diffusion until convergence, with
λ = 0.001 and w = 1.

Skeleton simplification. The regularization framework is also interesting to
help the estimation of geometric and topological features such as normals, cur-
vatures, or shape skeletons. Fig.9 illustrates the simplification of the skeleton of
a polygonal curve by smoothing the position of its vertices. Here the skeleton is
given by a subgraph of the (Euclidean) Voronoi diagram computed from the set
of the polygon vertices, see for example (Bougleux et al., 2007b). The graph is
the polygon itself and w = 1. After the diffusion step, the skeleton is extracted
a second time. We can observe that the branches of the skeleton, related to the
smoother parts of the initial curve, are not affected by the diffusion, while the
other parts are simplified.

f0 : V ⊂ R
2 → R

2 skeleton p = 2, λ = 0.02

Figure 9. Skeleton simplification by smoothing the position of the vertices. The edges of the
polygon are unweighted. From left to right: the original polygonal curve, its skeleton, and the
simplified skeleton obtained with 10 iterations of the discrete diffusion process.
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6. Conclusion

We propose a general discrete framework for regularizing real-valued or vector-
valued functions on weighted graphs of arbitrary topology. The regularization,
based on a discrete p-Dirichlet energy, leads to a family of nonlinear iterative
processes which includes several filters used in image and mesh processing.

The choice of the graph topology and the choice of the weight function allow
to regularize any discrete data set or any function defined on a discrete data
set. Indeed, the data can be structured by neighborhood graphs weighted by
functions depending on data features. This can be applied in the context of image
smoothing, denoising or simplification. We also show that local and nonlocal
regularization functionals have the same expression when defined on graphs.
The main ongoing work is to use the proposed framework in the context of
hierarchical mesh segmentation and point cloud clustering.

Appendix

A. Proofs of Section 2

Proof of Proposition 1: From the expressions of the inner product in H(E)
(Eq. (2)) and the difference operator, the left side of Eq. (6) is written as:

〈H, dwf〉H(E) =
∑

xy∈E

H(xy) (γyxf(y) − γxyf(x))

=
∑

xy∈E

γyxH(xy)f(y)−
∑

xy∈E

γxyH(xy)f(x).

By replacing
∑

xy∈E by
∑

x∈V

∑
y∼x, and x and y by u and v, we have:

〈H, dwf〉H(E) =
∑

u∈V

∑

v∼u

γuvH(v, u)f(u)−
∑

u∈V

∑

v∼u

γuvH(u, v)f(u)

=
∑

u∈V

f(u)
∑

v∼u

γuv (H(v, u)−H(u, v)) (32)

(6)
= 〈d∗wH, f〉H(V )

(1)
=
∑

u∈V

d∗w(H)(u)f(u). (33)

Then, the result is obtained from Eq. (32) and Eq. (33) by taking f(u) = 1, for
all u ∈ V . �

Proof of Proposition 2: From the definition of the p-Laplace operator (Eq. (11)),
and the expression of the difference operator and its adjoint (Proposition 1), we
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have:

∆p
wf(u) =

∑

v∼u

γuv

(
| ▽w f(v)|p−2dw(f)(v, u)− | ▽w f(u)|p−2dw(f)(u, v)

)

=
∑

v∼u

γuv

(
| ▽w f(v)|p−2 + | ▽w f(u)|p−2

)
dw(f)(v, u). �

Now, we show that Eq. (13) is equal to Eq. (12), using the definition of the edge
derivative (Eq. (5)):

(13) =
∑

v∼u
e=(u,v)

γuv

(
γvu| ▽w f(v)|p−2

γvu

∂f

∂e

∣∣∣∣
v

− γuv| ▽w f(u)|p−2

γuv

∂f

∂e

∣∣∣∣
u

)

=
∑

v∼u
e=(u,v)

γuv

(
| ▽w f(v)|p−2(γuvf(u) − γvuf(v))

−| ▽w f(u)|p−2(γvuf(v) − γuvf(u))
)

= (12). �

B. Proof of Section 3

Proof of Property 2: The partial derivative of Rp-TV
w (f), at a vertex u1 ∈ V is

given by:

∂

∂f

(
∑

u∈V

| ▽w f(u)|p
)∣∣∣∣∣

u1

(9)
=

∂

∂f


∑

u∈V

(
∑

v∼u

(γvuf(v) − γuvf(u))2
)p

2



∣∣∣∣∣∣
u1

.

(34)
The derivative depends only on the edges incident to u1. Let v1, . . . , vk be the
vertices of V connected to u1 by an edge of E. Then we have:

(34) = −p
∑

v∼u1

γu1v (γvu1
f(v) − γu1vf(u1))

(
∑

v∼u1

(γvu1
f(v) − γu1vf(u1))

2

) p−2

2

+ pγu1v1
(γu1v1

f(u1) − γv1u1
f(v1))

(
∑

v∼v1

(γvv1
f(v) − γv1vf(v1))

2

) p−2

2

+ . . .+ pγu1vk
(γu1vk

f(u1) − γvku1
f(vk))

(
∑

v∼vk

(γvvk
f(v) − γvkvf(vk))

2

) p−2

2

(9)
= p

∑

v∼u1

γu1v (γu1vf(u1) − γvu1
f(v)) | ▽w f(u1)|p−2

+ p
∑

v∼u1

γu1v (γu1vf(u1) − γvu1
f(v)) | ▽w f(v)|p−2 (12)

= p∆p
wf(u1). �
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