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Abstract. We propose a discrete regularization framework on weighted
graphs of arbitrary topology, which leads to a family of nonlinear filters,
such as the bilateral filter or the TV digital filter. This framework, which
minimizes a loss function plus a regularization term, is parameterized by
a weight function defined as a similarity measure. It is applicable to se-
veral problems in image processing, data analysis and classification. We
apply this framework to the image smoothing and segmentation prob-
lems.

1 Introduction

Image smoothing, denoising and segmentation are fundamental problems of com-
puter vision. The goal of image smoothing and denoising is to remove spurious
details and/or noise for a given possibly corrupted image, while maintaining
essential features such as edges. The goal of segmentation is to divide a given
image into parts that belong to distinct objects in the image. There exists several
methods to solve these problems. The variational ones, based on regularization,
are particularly well suited to impose constraints on the solution, such as regula-
rity. These methods, solved with partial differential equations (PDE), constitute
a significant framework in image processing and data analysis. In the case of
an image regularization, a classical methodology first supposes the image to
be defined on a continuous domain. Then it considers a continuous variational
function which typically involves a regularization term (internal energy), and a
constraint term (external energy). The problem is formalized by a minimization
problem which can be solved by finding the steady-state solution of a heat equa-
tion corresponding to the Euler-Lagrange equation. Finally, the resulting PDE
are numerically discretized [1], [2].

However, many data can be represented by graphs of arbitrary or complex
topology. With these representations, the continuous regularization cannot work.
The idea is to consider a discrete regularization on graphs, which can be re-
duced to solve linear systems or nonlinear systems by iterative methods. This
was proposed for images represented by grid graphs [3]. For example, the total
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variation (TV) digital filter [4], which is a discretization of the continuous one,
is used for denoising and enhancing images, or more generally data living on
graphs. In the context of data classification, a discrete regularization method is
applied on weighted graphs, using discrete differential operators [5], [6], [7]. We
propose a regularization framework on weighted graphs of arbitrary topology,
which corresponds to a family of nonlinear filters. This family includes the bila-
teral filter [8] and the TV digital filter. It is parameterized by a weight function
defined as a similarity measure. Each filter can be implemented by a simple and
fast algorithm. We apply our framework on the image smoothing, denoising and
segmentation problems.

This article is organized as follows: In Section 2, we present differential ge-
ometry on weighted graphs, which is similar to the one introduced in [6]. In
Section 3, we present discrete regularizations on graphs. In Section 4, we present
algorithms for image filtering and segmentation by the construction of a graph
corresponding to an initial adapted partition and by a diffusion on this graph.
The partition of the graph is realized by an energy partition [9].

2 Differential Geometry on Weighted Graphs

A graph G = (V, E) consists of a finite set V of vertices and a finite set E ⊆ V ×V
of edges. We assume G to be undirected, connected, with no self-loops and no
multiple edges. Let (u, v) be the edge that connects the vertices u and v, G
is weighted if it is associated with a weight function w : E → R+ satisfying
w(u, v) = w(v, u), for all the edges in E. The degree function dw : V → R+ of a
vertex v, is a measure on the neighborhood of v: dw(v) =

∑

u∼v w(u, v), where
u ∼ v denotes all the vertices u connected to v by an edge of E.

Let H(V ) be the Hilbert space of real-valued functions f : V → R. Similarly
define H(E), the graph gradient operator ▽ : H(V ) → H(E) of f on an edge
(u, v) is:

(▽f)(u, v) =

√

w(u, v)

dw(u)
(f(u) − f(v)). (1)

The amplitude of the gradient, or the local variation of f at the vertex v, is
defined to be:

‖ ▽v f‖H(V ) =

√

∑

u∼v

(▽f)2(u, v). (2)

It can be viewed as a measure of the regularity of a function around a vertex.
Meanwhile the global variation of f (or the 2-Dirichlet form), defined by:

Rp(f) =
1

p

∑

v∈V

‖ ▽v f‖p

H(V ), (3)

measures of the regularity of f over the graph.
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The graph Laplace operator ∆ : H(V ) → H(V ), of f at a vertex v, is defined
to be:

(∆f)(v) =
∂R2(f)

∂f

∣

∣

∣

∣

v

= dw(v)f(v) −
∑

u∼v

w(u, v)f(u). (4)

3 Regularization of Weighted Graphs

Given a graph G = (V, E) and a function g ∈ H(V ), the regularization of
G consists in the search of a function f ∈ H(V ), which is not only smooth
enough on G, but also close to g. It is an optimization problem formalized by
the minimization of a weighted sum of two energy terms:

f∗ = arg min
f∈H(V )

{

Rp(f) +
µ

2
‖f − g‖2

H(V )

}

, (5)

where Rp(f) represents the regularization term defined by (3), and the second
term represents the closeness to the function g. The positive constant µ corres-
ponds to the Lagrange relaxation parameter. Since the energy terms in (5) are
strictly convex functions, then the optimization problem has a unique solution
f∗ which satisfies the equation:

∂Rp(f
∗)

∂f∗
+ µ(f∗ − g) = 0. (6)

Depending on the choice of p ∈ N∗, the equation (6) leads to different kinds of
regularizations. In the particular case of p = 2, the equation (6) can be considered
as the discrete analogue of the Euler-Lagrange equation on a graph. Using the
Laplace operator of the equation (4), we rewrite the equation (6) for each vertex
of V :

(µ + dw(v))f∗(v) −
∑

u∼v

w(u, v)f∗(u) = µg(v),∀v ∈ V . (7)

This is a system of linear equations in f∗ which is strictly positive definite.
Its solution is unique and depends on g and µ. Among the existing methods
to solve the system (7), the local iterative ones converge to the solution with
efficiency, even if the graph has a large size or a complex topology. The Gauss-
Jacobi method is the simplest of them. Let n be the iteration step, f (n) be the
function f∗ at the step n, and f (0) = g. At each vertex v of V , the computation
of f (n+1)(v) only depends on f (0) and on the values of f (n) in the neighborhood
of v. The following equation expresses an iteration of the algorithm:

f (n+1)(v) =
1

µ + dw(v)

∑

u∼v

w(u, v)f (n)(u) +
µ

µ + dw(v)
f (0)(v). (8)

The above method is a forced low-pass digital filter. We call it, the anisotropic

weighted Laplace filter and note it AWL(n, G, g, µ).
The cases where p 6= 2 are not the purpose of this article since they do not use

the Laplace operator. As in the case of p = 2, they have been used in numerous
applications with other definitions of the gradient operator (1), see [6], [7] for
example.
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4 Application to Image Filtering and Segmentation

4.1 Graph Representation and Energy Partition

Let g : Z
2 → R be a grey level image of pixels. We modelize g by a weighted

graph G = (V, E) such that each vertex of V corresponds to a pixel of g, and
the weight function

w(vi, vj) = exp(−λ|g(vi) − g(vj)|),λ ∈ R+ (9)

estimates the similarity between two pixels. Since the proposed framework enables
to deal with arbitrary graphs, we experiment two graph representations: (i) re-
gular grid graphs generated by 4-adjacency, and (ii) graphs of arbitrary topology
generated by a pre-segmentation of g. In the case (ii), we first modelize g by a
regular grid graph generated by 4-adjacency. Then, we compute an energy par-
tition of G which is analogue to the energy partition of the image domain [9]. In
the following, we present the mathematical framework associated to the energy
partition of graphs.

A path c(u, v) is a sequence of vertices (v1, . . . , vm) such that u = v1, v = vm,
and (vi, vi+1) ∈ E for all 1 ≤ i < m. Let CG(u, v) be the set of paths connecting
u and v. We define the pseudo-metric δ : V × V → R+ to be:

δ(u, v) = min
c∈CG(u,v)

(

m−1
∑

i=1

w(vi, vi+1)

)

. (10)

Given a finite set of source vertices S = {s1, . . . , sk} ⊂ V , the energy induced
by δ is given by the minimal individual energy: δS(v) = infsi∈S δ(si, v), ∀v ∈ V .
Based on the pseudo-metric δ, the influence zone of a source vertex si is defined
to be the set of vertices that are closer to si than to any other source vertex:
Zδ(si, S) = {v ∈ S|δ(si, v) ≤ δ(sj , v), ∀sj ∈ S}. The energy partition of G, with
respect to the set of sources S and the pseudo-metric δ, corresponds to the set
of influence zones: Eδ(S, Γ ) = {Zδ(si, S), ∀si ∈ S}.

With these definitions, the image pre-segmentation consists in finding a set of
source vertices and a pseudo-metric. We use the set of extrema of the intensity
of g as a set of source vertices. To obtain exactly an energy partition which
considers the total variation of g along a path, we use the following weight
function in (10): w(u, v) = |g(u)− g(v)|. Then, the energy partition of the graph
represents an approximation of the image, by assigning a model to each influence
zone of the partition. The model is determined by the distribution of the graph
values on the influence zone. Among the different models, the simplest are the
constant ones, as mean or median value of the influence zone. The resultant
graph G′ = (V ′, E′), is a connectivity graph where V ′ = S and E′ is the set of
edges connecting two vertices si, sj ∈ S if Zδ(si, S) ∩ Zδ(sj , S) 6= ∅.

4.2 Image Smoothing and Denoising

Given an image g as defined in Section 4.1, an integer n, and two reals λ (for
the weight function (9)) and µ, the image g is transformed into an image f∗ =
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AWF (n, g, G, µ). The method described in Section 3 gives the iterative algorithm
of the AWL filter. The action of the filter is illustrated in Fig.1 on a grid graph
for denoising, and on an arbitrary graph in Fig.2 for smoothing. The arbitrary
graph is a connectivity graph obtained by an energy partition of g.

4.3 Image Segmentation

Given an image g as defined in Section 4.1, an integer n, and three reals λ (for
the weight function (9), µ and t, the segmentation algorithm is organized in four
main steps:

(i) Pre-segmentation of g from its associated grid graph G, which gives a graph
G′ and a pre-segmented image g′ (see Section 4.1).

(ii) Regularization of G′ by the iterative algorithm: f∗ = AWL(n, G′, g′, 0).
(iii) We cut the edges of G′ which have a weight less than a fixed threshold t (the

weight is computed from f∗).
(iv) We merge the influence zones of g′ that remain connected by an edge.

The segmentation algorithm is illustrated in Fig.3, where g′ is a model of g based
on the mean value (step (i)).

4.4 Related Digital Filters

The bilateral is a nonlinear filter on digital images. It has recently been pro-
posed as an alternative to anisotropic diffusion [10]. Unlike the anisotropic dif-
fusion, the bilateral filtering does not involve the solution of partial differential
equations and can be implemented in a single iteration [11]. While the bila-
teral filtering has been originally proposed as an heuristic algorithm, it can
be derived as a solution of the regularization of grid graphs. The AWL fil-
ter is equivalent to the bilateral filter if in the iteration (8) we have µ = 0 and
w(u, v) = exp

(

−(u − v)2/2σ2
D

)

exp
(

−(g(u) − g(v))2/2σ2
R

)

, where g is an image,
σD is the geometric spread in the domain, and σR is the photometric spread in
the image range.

The total variation digital filter is another nonlinear filter on digital images,
and more generally on arbitrary graphs, which is use for denoising data [4]. It is
the discrete version of the total variation formalized by the minimization of (5)
with p = 1 and w = 1 for all edges. Moreover, it can be implemented by the
AWL filter by taking the weight function: w(u, v) = 1

‖▽vg‖ + 1
‖▽ug‖ .

5 Conclusion

We have proposed a family of nonlinear filters, based on weighted graph regulari-
zation. This family, which is parameterized by a weight function, includes stan-
dard filters as the bilateral filter and the TV digital filter. Moreover, we have
shown two applications of the regularization framework in the domain of image
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processing. As a continuation of this work, we will define a hierarchical seg-
mentation and other weight functions that could realize other fusion processes
than the one based on the difference of image intensity. Also, we will apply the
regularization to the segmentation of non-organized set of points and to the
supervised classification of color images.
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(1) (2)

(3) (4)

(5) (6)

Fig. 1. (1) The original image. The regularizations are all computed with λ = 10: (2)
5 iterations and µ = 0.8, (3) 5 iterations and µ = 0.2, (4) 100 iterations and µ = 0.8,
(5) 100 iterations and µ = 0.5, (6) 100 iterations and µ = 0.2.
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(1) (2)

(3) (4)

Fig. 2. (1) The original image. (2) The connectivity graph. (3) The regularization with
µ = 0.5, λ = 0.5 and 20 iterations. (4) The regularization with µ = 0.5, λ = 1/5 and
20 iterations.

(1) (2) (3)

(4) (5) (6)

Fig. 3. (1) The original image. (2) The energy image. (3) The initial connectivity graph.
(4) The pre-segmented image. (5) The connectivity graph that has been cut after the
regularization process with λ = 1/5, four iterations and t = 5. (6) The segmented
image.


