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Abstract. This article proposes a new framework to regularize imaging lin-

ear inverse problems using an adaptive non-local energy. A non-local graph is
optimized to match the structures of the image to recover. This allows a better

reconstruction of geometric edges and textures present in natural images. A

fast algorithm computes iteratively both the solution of the regularization pro-
cess and the non-local graph adapted to this solution. The graph adaptation

is efficient to solve inverse problems with randomized measurements such as

inpainting random pixels or compressive sensing recovery. Our non-local reg-
ularization gives state-of-the-art results for this class of inverse problems. On

more challenging problems such as image super-resolution, our method gives

results comparable to sparse regularization in a translation invariant wavelet
frame.

1. Introduction. This paper studies the solution of linear ill-posed inverse prob-
lems in image processing. The goal is to recover a high resolution image f0 ∈ Rn of
n pixels from a set of p 6 n noisy linear measurements

u = Φf0 + ε ∈ Rp.

where ε is an additive noise. The linear operator Φ typically accounts for some
blurring, sub-sampling or missing pixels so that the measured data u only captures
a small portion of the original image f one wishes to recover.

To solve this ill-posed problem, one needs some prior knowledge on the kind of
typical images one expects to restore. This prior information should help to recover
the missing information. Regularization methods assume that f0 has some smooth-
ness, for instance small derivatives (linear Sobolev regularization) or bounded vari-
ations (non-linear regularization). This paper derives a new prior model based on
non-local comparison of patches.
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A prior is a functional J(f) that is small when f is close to the smoothness
model. A regularized solution f? to the inverse problem is written in variational
form as

(1) f? ∈ argmin
f∈Rn

1

2λ
||u− Φf ||2 + J(f),

where the minimum is not necessarily unique. The weight λ needs to be adapted to
match the amplitude of the noise ε, which might be a non-trivial task in practical
situations.

1.1. Previous works.

1.1.1. Classical smoothness priors. The simplest prior model assumes an uniform
smoothness of the image, and uses for instance a discretized Sobolev norm

(2) JSob(f) =
∑
x

||∇f(x)||2,

where ∇f(x) is a finite difference approximation of the gradient of f at pixel x. To
enable the recovery of sharp features such as edges, Rudin, Osher and Fatemi [50]
proposed to use the total variation norm for denoising purpose, when Φ = Id

(3) JTV(f) =
∑
x

||∇f(x)||.

Total variation regularization prior (3) has been used to solve super-resolution [38]
and inpainting of small holes [13]. Inpainting of larger holes requires higher order
regularizations, that take into account the curvature of the level lines [40, 5, 7] or a
tensor diffusion [56].

Given a frame {ψm}m of Rn, one defines an analysis sparsity enforcing prior in
this frame using the `1 norm of the correlation with the frame atoms

(4) J spars(f) =
∑
m

|〈f, ψm〉|.

This prior has been introduced by Donoho and Johnstone [21] with the orthogonal
wavelet basis for denoising purpose, when Φ = Id. In this case, the solution f? of
(1) is obtained with a soft thresholding. Sparsity prior (4) has been used to solve
general inverse problems, see for instance [19, 16] and the references therein. It can
also be used in conjunction with redundant frames instead of orthogonal bases, see
for instance [26]. For a redundant frame of Rn, it is also possible to search for the
coefficients of f? in this frame. This corresponds to a synthesis sparsity prior, that
differs from (4), see for instance [29].

It is possible to adapt the representation by learning the atoms {ψm}m used
in the sparse regularization (4), see for instance [43]. This leads to redundant
representations with state-of-the-art image denoising results [25]. Dictionaries can
also be learned iteratively to perform image inpainting [37]and simultaneous image
separation and inpainting [48].

1.1.2. Non-local diffusion. In order to better respect edges in images than total vari-
ation and wavelet sparsity, several edge-aware filtering schemes have been proposed,
among which Yaroslavsky’s filter [59], the bilateral filter [55], Susan filter [52] and
Beltrami flow [53]. The non-local means filter [8] goes one step further by averaging
pixels that can be arbitrary far away, using a similarity measure based on distance
between patches.
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As shown for instance in [45], for denoising Φ = Id, these edge adaptive filters
are related to the minimization of (1) using a graph based regularization over the
image

(5) Jgraph
w (f) =

∑
x,y

wx,y|f(x)− f(y)|α

where α = 2. The weights wx,y are computed from the input noisy image u using
either the distance |u(x) − u(y)| between the noisy pixel values [55, 59, 53] or the
distance ||px(f) − py(f)|| between the patches (px(f), py(f)) around x and y [8,
15, 54]. This variational denoising is related to sparsity in an adapted basis of
eigenvectors of non-local diffusion operators [54, 45]

This graph based energy (5) is generalized using an arbitrary α > 1 which, for
α = 1, defines a non-local total variation [32, 61, 27].

1.1.3. Non-local regularization of inverse problems. For some class of inverse prob-
lems, the weights wx,y can be estimated from the observations u. This is for instance
the case for inpainting small holes [34], deblurring [41, 35, 9], demosaicing [10] and
segmentation [33].

These approaches share similarities with exemplar-based super-resolution, see for
instance [18, 31, 23]. Although these methods operate using patches comparisons,
they are different because they make use of pairs of low/high resolution exemplar
patches.

For many other inverse problems, like inpainting of large or randomized holes,
or compressive sensing, the observation u cannot be used directly to estimate the
regularization graph w. One thus needs to iteratively estimate the graph while
performing the inversion. For inpainting, computer graphics methods perform patch
copy [17], that is closely related to an iterative estimation of a non-local graph.
These methods are related to texture synthesis with patch recopy [24, 58], and can
be re-casted as a non-convex variational problem [3].

We have presented in the conference paper [47] for the first time a general frame-
work for the non-local regularization of inverse problems. This framework is used
by Zhang et al. in [60], where Bregman iterations are used instead of the forward-
backward splitting initially proposed in [47], which might result in a faster algo-
rithm. A similar framework for image inpainting is developed by Facciolo et al.
in [28], where a variational justification for our initial choice of weights [47] is given.

2. Contributions. This paper proposes a new framework to solve general inverse
problems using a non-local and non-linear regularization on graphs. Our algorithm
is able to efficiently solve for a minimizer of the proposed energy by iteratively
computing an adapted graph and a solution of the inverse problem. We show
applications to inpainting, super-resolution and compressive sampling where this
new framework improves over wavelets and total variation regularizations.

This framework extends the initial proposal of our conference paper [47] as well
as the Bregmanized version of [60] by considering a more general family of priors
that compares patches and not pixel values. This allows us to prove the convergence
of our scheme toward a stationary point of the non-local energy. It extends the work
of [28] by treating arbitrary inverse problems beyond inpainting and by providing
a convergence guarantee.
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3. Non-local regularization of inverse problems.

3.1. Non-local regularization. This section introduces a non-local graph-based
regularization of the inverse problem u = Φf0 + ε. This regularization is adaptive
since the energy we consider

(6) J(f) = Jw(f) + γE(w)

is parameterized by a non-local graph w. This graph is a set of weights wx,y > 0
that link pixels x and y over the image plane. The functional Jw(f) regularizes the
image and enforces a non-local regularity along the graph w, while the functional
E(w) constrains the graph itself.

The non-adaptive regularization (1) is extended to this adaptive non-local setting
by considering a minimization on both the image to recover and the graph

(7) (f?, w?) ∈ argmin
f∈Rn,w∈C

E(f, w) =
1

2λ
||u− Φf ||2 + Jw(f) + γE(w),

where C is an additional set of constraints on the graph.

3.2. Patch extraction. A non-local regularization is obtained by comparing small
patches that can be far away in the image plane. A patch of τ × τ pixels at location
x ∈ {0, . . . ,

√
n− 1}2 in the image is defined as

(8) ∀ t ∈ {−(τ − 1)/2 + 1, . . . , (τ − 1)/2}2, πx(f)(t) = f(x+ t)

where τ is assumed to be an odd integer. A patch πx(f) is a vector of size τ2.
To speed up the computation, the dimensionality of πx(f) is reduced from τ2 to

q 6 τ2 using an an orthogonal projector U ∈ Rq×τ2

that satisfies UU∗ = Id. The
resulting patches of lower dimension are defined as

(9) px(f) = Uπx(f) ∈ Rq,

Using a small value for q speeds up the algorithms but might deteriorate the visual
quality of the result. Section 5 describes how U is computed in practice for the
numerical experiments.

We note that this framework extends to color images f of n pixels by considering
patches of dimension 3τ2. In this case, the projector U is useful to reduce the
dimensionality by making use of the redundancy across color channels.

3.3. Graph-based priors on images. A non-local graph is a set of weights w =
{wx,y}x,y which assigns to each pair of pixels (x, y) a weight wx,y > 0. We further
impose that for each x, {wx,y}y is a probability distribution and that the graph
only connects pixels that are not too far away

(10) C =

{
w \

∑
y

wx,y = 1, and

{
||x− y|| 6 ρ ⇒ wx,y > wmin

||x− y|| > ρ ⇒ wx,y = 0

}
.

Note that we impose a lower bound wx,y > wmin on the weights, where wmin > 0
is a small constant. Theorem 1 requires wmin > 0 to ensure the convergence of our
algorithm, although we observe numerically the convergence even if wmin = 0.

The parameter ρ controls the degree of non-locality of the graph. For image
containing periodic features, increasing the value of ρ might improve the numerical
results but it also increases the complexity of the algorithms. For natural images, it
might actually improve the results as well as the algorithmic complexity to impose
a not so large value of ρ, which leads to a semi-non-local regularization.
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This weighted graph is used to indicate which local patches should be compared
in the image, and leads to the following non-local regularization functional

(11) Jw(f) =
∑

||x−y||6ρ

wx,y||px(f)− py(f)||α,

where α > 1 controls the shape of the functional. Such patch variations are consid-
ered by Peyré for texture synthesis [46] and for inpainting by Facciolo et al.[28].

For α = 2, one obtains a quadratic energy that extends the Sobolev smoothness
prior (2) from pixels to patches. For α = 1, this energy extends the total variation
(3) to patches. A major difference with previous works [32, 61, 27] is that Jw uses
patch variations ||px(f) − py(f)|| instead of pixel variations |f(x) − f(y)| as this is
the case in (5).

3.4. Maximum entropy prior on the graph weights. The constraint w ∈ C is
not strong enough to select an efficient graph to process an image. Since

∑
y wx,y =

1, the set of weights {wx,y}y should be thought as being a probability distribution.
To control the spread of this distribution around its modes, and following [28], we
use a negative entropy to regularize the weights

E(w) =


∑

||x−y||6ρ

(wx,y − wmin) log(wx,y − wmin) if w ∈ C

+∞ otherwise.

The parameter γ in (6) weights the influence of this entropy constraint on w and
should be adapted to the geometry of the image to recover and to the noise level.

Decreasing the value of γ enforces the weight distribution {wx,y}y to have a low
entropy, and thus reduces the spread of the values, see Figure 1. When γ tends to
0, the distribution tends to a degenerate Dirac distribution. Section 4.3 shows more
precisely the influence of the parameter γ on the computed weight.
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Figure 1. Influence of the parameter γ on the weights computed
according to (30) (only a small subset of the weights {wx,y}y is
shown). The values of γ/maxy ||px(f) − py(f)|| are 0.5, 0.1, 0.01
from top to bottom.
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3.4.1. Non-local Patch Operators. Before describing in the next section our algo-
rithm to solve (7), we introduce linear operators to re-write in a compact way
graph-based priors.

The patch extraction process (8) defines a mapping from the pixel domain Rn to
the patch domain P

P :

{
Rn −→ P
f 7−→ {px(f)}x

.

A set of patches {px(f)}x ∈ P is stored as a matrix of q × n elements. The adjoint
mapping is defined as

P ∗ :

{
P −→ Rn
{px}x 7−→ f

where f(x) =
∑
y

(U∗py)(x− y)

where the sum is restricted to pixels y = (y1, y2) such that

−τ − 1

2
6 x1 − y1 6

τ − 1

2
and − τ − 1

2
6 x2 − y2 6

τ − 1

2
.

We note that a special care should be taken near boundaries of the image. In
the numerical experiments, we use a symmetric extension of the image to avoid
boundary artifacts.

The non-local energy defined in (11) is a vectorial `α norm

Jw(f) = ||GwPf ||αα,

where the patch-valued gradient maps patches in P to patches differentials in D

(12) Gw :

{
P −→ D
{px}x 7−→ {dx,y}||x−y||6ρ

, where dx,y = w
1
α
x,y(px − py).

A patch differential {dx,y}||x−y||6ρ ∈ D is stored as an array of size q×n×Cρ, where

(13) Cρ = | {x \ ||x|| 6 ρ} |,

is the number of pixels in an Euclidean ball of radius ρ. The adjoint of this patch-
valued gradient is a patch-valued divergence

G∗w :

{
D −→ P

{dx,y}||x−y||6ρ 7−→ {px}x
, where px =

∑
||x−y||6ρ

w
1
α
x,ydx,y − w

1
α
y,xdy,x.

The `α norm of patch differentials d = {dx,y}||x−y||6ρ is defined as

(14) ∀α < +∞, ||d||αα =
∑

||x−y||6ρ

||dx,y||α, and ||d||∞ = max
||x−y||6ρ

||dx,y||.

4. Non-local regularization algorithm. While the optimization problem (7) is
separately convex with respect to f and to w, it is not jointly convex in (f, w). The
minimization of (7) is thus difficult, and we propose to use a a coordinate descent
algorithm that optimizes successively the graph w and then the image f to recover.
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4.1. Block coordinate descent algorithm. Given some fixed graph w ∈ C, an
optimal image f(w) solves

(15) f(w) ∈ argmin
f∈Rn

E(f, w) = argmin
f∈Rn

1

2
||u− Φf ||2 + λJw(f).

where E is defined in (7). Section 4.2 details how to compute such an image. Given
some fixed image f ∈ Rn, the optimal graph is defined as

(16) w(f) = argmin
w∈C

E(f, w) = argmin
w∈C

Jw(f) + γE(w).

Section 4.3 details how to compute such a graph.
The block coordinate descent algorithm starts from some initial graph w0, for

instance using constant weights. It then iterates

fk+1 = f(wk) and wk+1 = w(fk+1).(17)

The following theorem studies the convergence of this iterative scheme in the case
α > 1. It makes use of the gradient G0 = Gw0 for constant weights w0

x,y = 1/τ2 for
all ||x− y|| 6 ρ.

Theorem 1. We suppose that the lower bound on the weights satisfies wmin > 0,
that α > 1, and that

(18) Ker(Φ) ∩Ker(G0P ) = {0}.

The sequence {(fk, wk)}k is well defined and bounded. Every accumulation point
(f?, w?) of the sequence is a stationary point of E defined in (7), which means
∇E(f?, w?) = 0.

Proof. We check the hypothesis of Theorem 4.1 of Tseng [57], that proves our result.
Following the notations of [57], the energy is rewritten as

E(f, w) =
1

2λ
||u− Φf ||2 + Jw(f) + µE(w) + iC(w) = f0(f, w) + f1(w)

where f1(w) = µE(w) + iC(w). The indicator function is defined as iC(w) = +∞ if
w /∈ C and iC(w) = 0 otherwise.

The function E is continuous on the level set

X0 = {(f, w) \ E(f, w) 6 E(f0, w0)} .

Note that for any k, (fk, wk) ∈ X0 because E is decaying with k. We then show
that X0 is bounded, which ensures the existence of convergent sub-sequences. For
w ∈ C, one has w > wmin > 0 for all ||x− y|| 6 ρ, and hence

Jw(f) > wmin||G0Pf ||αα > wminC
α
0 ||G0Pf ||α2

where we have used the fact that || · ||α > C0|| · ||2, where C0 = 1 if 1 < α 6 2, and
C0 = n1/α−1/2 if α > 2. We denote as Π the orthogonal projector on Ker(G0P ).
Denoting as C1 > 0 is the smallest non zero singular value of G0P , one thus has

(19) Jw(f) > wminC
α
0 ||G0P (f −Πf)||α2 > wminC

α
0 C

α
1 ||f −Π(f)||α2 .

We decompose u = Φū+ r where r ∈ Im(Φ)⊥, so that

(20) ||u− Φf ||2 > ||Φ(ū− f)||2 > C2
2 ||Π(ū− f)||2

where C2 > 0 the smallest non zero singular value of Φ, and where we have make
use of the hypothesis that Ker(Φ) ∩Ker(G0P ) = {0}.
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Putting (19) and (20) together shows that

E(f, w) >
C2

2

2λ
||Π(ū)−Π(f))||2 + wminC

α
0 C

α
1 ||f −Π(f)||α2 + µE(w).

Since under the constraint w ∈ C, w is bounded, this shows that X0 is also bounded.
The function f0(f, w) is of class C1, because the mapping (f, w) 7→ Jw(f) is of

class C1 for α > 1. The function E satisfies hypothesis (A1) of [57], and hence
lemma 3.1 of [57] shows that E is regular at each point of X0.

If one does not perform any dimensionality reduction to compute the patches
px(f), meaning U = Id, then condition (18) boils down to 1 /∈ Ker(Φ). This is a
classical non-degeneracy condition for variational regularizations involving deriva-
tives, such as the Sobolev prior (2) and the total variation prior (3). For an arbitrary
projector U , condition (18) is difficult to check analytically, and we verify numeri-
cally that (18) holds in all numerical examples.

Theorem 1 ensures convergence for α > 1. Unfortunately, for α = 1, the term
Jw(f) that mixes w and f is non smooth, so that one cannot guarantee the con-
vergence in this case. Section 5 shows that this iterative scheme converges well in
practical cases even for α = 1.

4.2. Optimization on the image. To compute f(w) defined in (15) given some
weights w ∈ C, we distinguish between the cases α > 1 and α = 1.

4.2.1. Optimization on the Image, α > 1. When α > 1, computing f(w) corre-
sponds to the minimization of a smooth convex functional defined in (15). A simple
scheme is a gradient descent, which reads

(21) f (`+1) = f (`) − ν`
(

Φ∗(Φf (`) − u) + λαP ∗G∗wd̃
(`)
)

where d̃(`) ∈ D is computed as

d(`) = GwPf
(`) and ∀ (x, y), d̃(`)x,y = d(`)x,y||d(`)x,y||α−2.

Since for α < 2 the functional does not have a Lipshitz gradient, the step size ν`
is computed using a 1-D line search procedure to ensure the following convergence
result, see for instance [14].

Proposition 1. One has f (`) → f(w) when ` → +∞, where f(w) is a solution
of (15).

It is also possible to use more efficient second order schemes, such as quasi-
Newton [4], that works well in practice.

The case α = 2 deserves special attention, because it corresponds to a quadratic
minimization, and a solution can be found by solving the following linear system

(22) (Φ∗Φ + 2λP ∗G∗wGwP )f(w) = Φ∗y.

A solution f(w) can be computed efficiently using a conjugate gradient descent.

4.2.2. Optimization on the Image, α = 1. For α = 1, f(w) is a solution of the
following convex optimization problem

(23) f(w) ∈ argmin
f∈Rn

1

2
||u− Φf ||2 + λ||GwPf ||1.

This corresponds to the minimization of the sum of a smooth quadratic functional
||u − Φf ||2 and a non-smooth functional ||GwPf ||1. Several efficient first order
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Non-local Regularization of Inverse Problems 9

schemes have been devised to perform such a minimization, among which forward-
backward splitting [16, 6], Nesterov’s algorithm [42, 2] and Bregman iterations [60].
We now detail the forward-backward splitting, that has the advantage of simplicity,
although more efficient algorithms could be used as well.

Starting from an initial image f (0), forward-backward iterations alternate be-
tween a gradient descent step

(24) f̃ (`) = f (`) − νΦ∗(Φf (`) − u)

and a proximal denoising correction

(25) f (`+1) = proxνλJw(f̃ (`)),

where the proximal operator is the solution of a denoising problem

(26) proxωJw(f̃) = argmin
f∈Rn

1

2
||f − f̃ ||2 + ω||GwPf ||1.

Following for instance [16], one has the following convergence result.

Proposition 2. If 0 < ν < 2/||Φ∗Φ||, one has f (`) → f(w) when ` → +∞, where
f(w) is a solution of (23).

The proximal operator (26) is the solution of a convex functional that generalizes
the total variation denoising. Following Chambolle [12], we compute this operator
through a dual optimization problem, that performs the optimization on a patch
differential d ∈ D rather than on the set of images.

Proposition 3. One has

proxωJw(f̃) = f̃ − ωP ∗G∗wd?

where d? is a solution of the following dual convex optimization problem

(27) d? ∈ argmin
d∈D,||d||∞61

||f̃ − ωP ∗G∗wd||2.

Proof. The proof of this duality relation follows closely the original work of Cham-
bolle [12], by replacing the gradient operator ∇ by GwP , and by replacing the
duality between the `1/`∞ norms of 2-D vector fields by the duality among the
`1/`∞ norms defined by (14).

The constrained problem (27) can be solved using several first order schemes,
including foward-backward splitting [42] and Nesterov’s algorithm [42].

The foward-backward splitting corresponds to the usual projected gradient de-
scent, that iterates between a gradient step

(28) d̃[m] = d[m] + ηGwP (f̃/ω − P ∗G∗wd[m]),

and a projection step on the `∞ constraint

(29) d[m+1]
x,y =

d̃
[m]
x,y

max(1, ||d̃[m]
x,y ||)

.

Standard results for the convergence of a projected gradient descent, see for in-
stance [16], shows the following convergence result.

Proposition 4. If 0 < η < 2/||GwPP ∗G∗w||, one has d[m] → d? when m → +∞,
where d? is a solution of (27).

The operator norm ||GwPP ∗G∗w|| is estimated numerically using a few power
iterations to compute the largest singular value of GwP .
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4.3. Optimization on the graph. If f is fixed, optimizing (7) with respect to w
defines an optimal graph w(f), which is the solution of the following strictly convex
optimization problem

w(f) = argmin
w∈C

Jw(f) + γE(w)

= argmin
w∈C

∑
||x−y||6ρ

wx,y||px(f)− py(f)||α + γ(wx,y − wmin) log(wx,y − wmin).

The optimal graph is computed as detailed in the following proposition, where

Cρ = | {x \ ||x|| 6 ρ} |,
already introduced in (13), is the number of connexions between one patch and its
neighboring patches.

Proposition 5. For any f ∈ RN , if wmin 6 1/Cρ, one has

(30) w(f)x,y =
w̃x,y
Zx

where w̃x,y =

{
wmin + e−

||px(f)−py(f)||α

γ if ||x− y|| 6 ρ,
0 otherwise,

where the normalizing constant is

Zx =

∑
y w̃x,y

1− wminCρ
.

Proof. The proof follows closely the one in [28], that was made for α = 1 and for
wmin = 0. For each x, one needs to find the minimizer with respect to {wx,y}y of

(31)
∑
y

wx,y||px(f)− py(f)||α + γ(wx,y − wmin) log(wx,y − wmin)

under the constraints that wx,y > wmin for ||x − y|| 6 ρ, and that
∑
y wx,y = 1. If

a minimum is reached at some w where for all y, wx,y > wmin, then the gradient
with respect to {wx,y}y of the objective (31) is proportional to the gradient of the
constraint

∑
y wx,y = 1, so that there exists some C ∈ R such that

∀ y, ||px(f)− py(f)||α + γ (log(wx,y − wmin) + 1) = C.

Adapting C for
∑
y wx,y = 1 to hold, one obtains the formula (30). If wmin 6 1/Cρ,

one has w ∈ C so that w is a valid minimizer of (31). Since the function to optimize
is strictly convex and C is convex, it is the only one.

The constraint wmin 6 1/Cρ imposed by the theorem is not an issue since for
numerical applications, wmin is chosen very small. We note that for α = 2, one
recovers the Gaussian weights used in NL-means [8], but they differ if α 6= 2.

4.4. The non-local regularization algorithm. The overall block-wise coordi-
nate descent algorithm is summerized in Table 1, both for the case α > 1 (gradient
descent) and α = 1 (forward-backward). For the gradient descent, it makes use of
two nested inner loops on (fk, wk) and f (`). For the forward-backward, it makes
use of three nested inner loops, on (fk, wk), f (`) and d[m]. The number of inner
iterations is monitored by the precision parameters tolf and told.

Convergence of the forward-backward iterations when ` tends to +∞ is guar-
anteed if the errors generated by the inner iterations on m are summable [16]. In

theory, this requires to lower the tolerance told = tol
(k)
d as k is increasing. For

the numerical experiments, we use fixed tolerances tolf = told = 10−3, which in
practice does not lead to convergence issue.
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Algorithm 1: Block coordinate descent algorithm to minimize (7) for α = 1.

Initialization: set f0 = 0, define w0 using constant weights, set k = 0.
while not converged do

Image update: initialize f (0) = fk, set ` = 0.
while ||f (`+1) − f (`)|| > tolf do

if α > 1 then
Compute f (`+1) using (21) with w = wk.

else

Gradient descent: compute f̃ (`) using (24).
Proximal correction: initialize d[0] = 0, set m = 0.
while ||d[m] − d[m+1]|| > told do

Gradient descent: compute d̃[m] using (28) with f̃ = f̃ (`) and
w = wk.
Projection: compute d[m+1] using (29).

Set f (`+1) = f̃ (`) − νλP ∗G∗wd[m+1].

Set fk+1 = f (`+1).
Weight update: compute wk+1 = w(fk+1) using (30).

Output: fk+1.

5. Numerical experiments. We have tested our algorithm on a wide range of
images f0 ∈ Rn of n = 256× 256 pixels, containing both edges and textures. In the
numerical simulations, we consider three different regularizations:

The total variation energy JTV, defined in equation (3). An algorithm similar
to algorithm 1 is used for this minimization, using the usual discrete gradient ∇
instead of the graph gradient Gw.

The sparsity energy J spars, defined in equation (4), using a redundant tight frame
of translation invariant 7-9 biorthogonal wavelets {ψm}m, see [39]. An algorithm
similar to algorithm 1 is used for this minimization, excepted that the proximal
projection is computed with a soft thresholding as detailed in [29].

The regularization Jw in an optimized graph, solved using algorithm 1. Section
5.1compares the cases α = 1 and α = 2, and the remaining part of the section
focus on α = 1. For this regularization, the size of the patch is set to τ = 5 pixels.
The parameter γ of equation (6) is set to τ ||f ||∞/10, which gives satisfying results
for the noise level we consider. The locality parameter ρ of equation (10) is fixed
to ρ = 15 pixels. The dimensionality reduction of the patches is set to q = 14,
and the projector U used in (9) is obtained by considering the q leading PCA
eigenvectors of random patches extracted from noise-free natural images.

In the three applications of Sections 5.1, 5.2 and 5.3, we use a Gaussian white noise
ε of standard deviation 0.02||u||∞. For all the proposed methods, the parameter λ
is optimized in an oracle manner to maximize the PSNR of the recovered image f?

PSNR(f?, f) = −20 log2(||f? − f ||/||f ||∞).

Computational complexity. The computational complexity of the method depends
on the dimensionality q of the patches, the non-locality factor ρ, and the shape
parameter α. For α = 1, the overhead with respect to the total variation regular-
ization is roughly qρ2 because of the higher dimensionality of the non-local gradient.
The computation time is lower for α = 2 because of the fast convergence of the con-
jugate gradient to solve (22). Note that several methods and data structures have
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been proposed to accelerate significantly non-local filtering, see for instance [36, 1].
These technics might also lead to a speed up of our regularization framework.

5.1. Inpainting. Inpainting aims at filling missing pixels from an image. It corre-
sponds to the following masking operator

(32) (Φf)(x) =

{
0 if x ∈ Ω,
f(x) if x /∈ Ω,

where Ω ⊂ {0, . . . ,
√
n− 1}2 is the region where the input data has been damaged.

In this case, Φ∗ = Φ, and one can take a proximity step size ν = 1 so that the
gradient descent step (24) becomes a projection

(33) f̃ (`) =

{
f (`)(x) if x ∈ Ω,
u(x) if x /∈ Ω.

Original f0 Observations u

k = 1 k = 5 k = 10 k = 40

Figure 2. Display of the iterates fk of the algorithm for inpaint-
ing, in the case α = 1.

Figure 2 shows, for a textured image with |Ω|/n = 0.7, the convergence of the
iterates of the algorithm for α = 1. One can see how each iteration of the algorithm
progressively refines the geometry so that the texture is correctly reconstructed.
This is possible because of the iterative refinement of the graph wk. Although there
is no formal proof of convergence for the case α = 1, we observe numerically a fast
convergence.

This convergence is further confirmed on Figure 3 by the logarithmic plot of
the decay of the energy E(fk, wk) toward E(f∞, w∞). We estimated numerically
this final value using (f∞, w∞) ≈ (f100, w100) and show the energy decay only for
k 6 12. The decay is fast (roughly geometrical) for both α = 1 and α = 2. We also
display the intermediate energies E(fk+1, wk) to show that both the image and the
graph update contribute to the decay of the energy.

Figure 4, left and center, compares the results obtained using α = 2 and α = 1.
The non-local total variation prior (α = 1) improves the inpainting results slightly.

Inverse Problems and Imaging Volume 5, No. 2 (2011), X–XX



Non-local Regularization of Inverse Problems 13

2 4 6 8 10 12
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

α = 1 α = 2

Figure 3. Display of the decay of the energy E de-
fined in (7) as a function of k. Star bullets display
log((E(fk, wk) − E(f∞, w∞))/E(f0, w0)) while circle bullets
display log((E(fk+1, wk)− E(f∞, w∞))/E(f0, w0)).

Figure 4, right, shows the result using the initial method proposed in [47], where
the non-local prior Jw defined in (11)is replaced by pixel-wise comparison Jgraph

w

defined in (5). The proposed prior improves the inpainting results.

α = 2 (23.43dB) α = 1 (23.65dB) α = 1, Jgraph
w (23.05dB)

Figure 4. Left and center: comparison of our reconstruction for
α = 2 and α = 1. Right: reconstruction using the graph energy
Jgraph
w .

Figure 5 shows some numerical examples of inpainting on images where 80% of
the pixels have been damaged, so that |Ω|/n = 0.8. The wavelets method performs
better than total variation in term of PSNR but tends to introduce some ringing
artifacts. Non-local total variation performs better in term of PSNR and is visually
more pleasing since edges are better reconstructed.

Similarly to other patch-regularizations [37], this method is not well adapted to
inpaint large missing regions, where the hole is larger than the size of the patches.
A similar issue appears with dictionary learning approaches. Note that both TV
and wavelets also perform poorly (they produce a blurry inpainted region). For
this setting, that corresponds to a texture synthesis problem, one should use patch
recopy methods popular in computer graphics such as for instance [17]. Note also
that for α = 1, our algorithm is equivalent to the one proposed in [28].
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Input u Wavelets TV Non-local

25.70dB 24.10dB 25.97dB

24.52dB 23.24dB 24.9dB

29.65dB 28.68dB 30.03dB

Figure 5. Examples of inpainting where Ω occupates 80% of pix-
els. The original images f0 are displayed on the left of figure 8.

In the following, we focus on the non-local total variation, and we thus present
results obtained using α = 1.

5.2. Super-resolution. Super-resolution corresponds to the recovery of a high-
definition image from a filtered and sub-sampled image. It is usually applied to a
sequence of images in video, see the review papers [44, 30]. We consider here the
problem of increasing the resolution of a single still image, which corresponds to
the inversion of the operator

(34) ∀ f ∈ Rn, Φf = (f ∗ h) ↓k

where ∗ is the discrete convoluton, p = n/k2, h ∈ Rn is a low-pass filter and
↓k: Rn → Rp is the sub-sampling operator by a factor k along each axis.

For a symmetric filter h, the dual operator is given by

∀ g ∈ Rp, Φ∗g = (g ↑k) ∗ h

where ↑k: Rp → Rn corresponds to the insertion of k− 1 zeros along horizontal and
vertical directions. In this experiment, we used a Gaussian kernel

h(x) = e−
||x||2

2σ2 .
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Input u Wavelets TV Non-local

21.16dB 19.19dB 21.32dB

20.23dB 18.82dB 20.69dB

25.03dB 24.48dB 24.98dB

Figure 6. Examples of image super-resolution with a down-
sampling k = 8. The original images f0 are displayed on the left of
figure 8.

Figure 6 shows some graphical results of the three tested super-resolution meth-
ods, for k = 8 and σ = 2. The results are comparable or slightly better than wavelet
inpainting.

When k = 1, the super-resolution problem is called deblurring, since it corre-
sponds to removing the blur induced by the camera point spread function h. Figure
7 shows examples of deblurring with k = 1 and σ = 4. In this setting, non-local
regularization improves with respect to both total variation and wavelets.

5.3. Compressive sensing. Compressive sensing is a new sampling theory that
uses a fixed set of linear measurements together with a non-linear reconstruction [11,
20]. The sensing operator computes the projection of the data on a set of p � n
vectors

(35) Φf = {〈f, ϕi〉}p−1i=0 ∈ Rp,

where {ϕi}p−1i=0 are the rows of Φ. For the recovery of f0 from partial measurements
u to be efficient, compressive sensing theory makes use of operators Φ that are
drawn from certain random matrix distributions.

Compressive sampling theory gives hypotheses on both the input signal f0 and
the sensing vectors {ϕi}i for the sampling process u = Φf0+ε to be efficiently solved
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Input u Wavelets TV Non-local

24.19dB 24.48dB 25.42dB

23.73dB 23.96dB 24.83dB

Figure 7. Examples of image deblurring with a Gaussian kernel
with σ = 3. The original images f0 are displayed on the left of
figure 8.

using the sparsity prior (4) when {ψm}m is an orthogonal basis. The initial theory
was derived for ϕi being realizations of independent Gaussian vectors [11, 20]. In
this setting, if the number of measurements is of the order of the sparsity s of the
signal f0,

p = O(s log(n/s)) where s = | {m \ 〈f0, ψm〉 6= 0} |,
then the recovery error satisfies ||f? − f0|| = O(||ε||) with high probability on the
randomized Φ. These results extend to approximately sparse signals, such as for
instance signals that are compressible in an orthogonal basis.

Gaussian matrices cannot be handled numerically for large imaging problems.
Rudelson and Vershinin [49]show that compressed sensing results extend to the set-
ting where Φf selects random entries from an orthogonal transform Hf of f , if
H ∈ Rn×n and {ψm}m enjoy some incoherence property. In our numerical experi-
ments, we use H a 2-D orthogonal Hadamard transform, see [51] for a definition of
the Hadamard transform and its fast implementation. To increase this incoherence
when {ψm}m is a wavelet basis, following for instance [22], we consider the following
sampling operator

Φf = (P1HP2f) ↓[p],
where P1 and P2 are independent realizations of a random permutation of the
n entries of a vector in Rn, and ↓[p] selects the p first entries of a vector. Such a
random sensing operator is computed in O(n log(n)) operations, which is important
to process high dimensional data.

The dual operator is given by

∀ g ∈ Rp, Φ∗g = P ∗2H
∗P ∗1 (g ↑[p])

where ↑[p]: Rp → Rn happens n − p zeros at the end of a vector, P ∗1 , P
∗
2 are the

reversed permutations, and H∗ is the inverse Hadamard transform.
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Figure 8 shows examples of compressive sampling reconstructions. The results
are consistently better than both translation wavelets and total variation regular-
izations.

Original f0 Wavelets TV Non-local

26.06dB 24.94dB 26.8dB

25.33dB 24.12dB 26.40dB

32.21dB 30.31dB 32.88dB

Figure 8. Examples of compressive sensing reconstruction with
p = n/8.

Conclusion. This paper proposed a new framework for the non-local resolution
of linear inverse problems. The variational minimization computes iteratively an
adaptive non-local graph that enhances the geometric features of the recovered
image. We proved the convergence of the algorithm, up to a sub-sequence, to a
stationary point of a non-convex energy. Numerical tests show that this method
improves over some state-of-the-art methods for inpainting, super-resolution and
compressive sampling.
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